Life Extension Spring Clearance Sale

Inflammation (Chronic) References

Disease Prevention and Treatment, 5th edition

The references on this page correspond with the print version of Disease Prevention and Treatment, 5th edition. Since we continuously update the protocols online in response to new scientific developments, readers are encouraged to review the latest versions of the protocols.

  1. Centers for Disease Control and Prevention. FASTSTATS - Leading Causes of Death. cdc.gov. 2011; Available at: http://www.cdc.gov/NCHS/fastats/Default.htm [Accessed December 23, 2011].
  2. Bastard, J.-P., Maachi, M., Lagathu, C., et al. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur. Cytokine Netw. 2006;17(1):4–12
  3. Cao, J. J. Effects of obesity on bone metabolism. J Orthop Surg Res. 2011;6:30
  4. Jha, R. K., Ma, Q., Sha, H., and Palikhe, M. Acute pancreatitis: a literature review. Med Sci Monit. 2009;15(7):RA147–56
  5. Ferrucci, L., Semba, R. D., Guralnik, J. M., et al. Proinflammatory state, hepcidin, and anemia in older persons. Blood. 2010;115(18):3810–3816
  6. Glorieux, G., Cohen, G., Jankowski, J., and Vanholder, R. Platelet/Leukocyte activation, inflammation, and uremia. Semin Dial. 2009;22(4):423–427
  7. Kundu, J. K., and Surh, Y.-J. Inflammation: gearing the journey to cancer. Mutat Res. 2008;659(1-2):15–30
  8. Murphy SL. et al. Deaths: Preliminary Data for 2010. National Vital Statistics Report 60:4; 1/11/2012.
  9. Singh, T., and Newman, A. B. Inflammatory markers in population studies of aging. Ageing Res Rev. 2011;10(3):319–329
  10. Karin, M., Lawrence, T., and Nizet, V. Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell. 2006;124(4):823–835
  11. Medzhitov, R. Origin and physiological roles of inflammation. Nature. 2008;454(7203):428–435
  12. Green DR et al. Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science. 2011 Aug 26;333(6046):1109-12.
  13. Dinarello CA et al. A clinical perspective of IL-1β as the gatekeeper of inflammation. Eur J Immunol. 2011 May;41(5):1203-17. doi: 10.1002/eji.201141550.
  14. Tschopp J. Mitochondria: Sovereign of inflammation? Eur J Immunol. 2011 May;41(5):1196-202. doi: 10.1002/eji.201141436.
  15. Mosquera JA. [Role of the receptor for advanced glycation end products (RAGE) in inflammation]. Invest Clin. 2010 Jun;51(2):257-68.
  16. Witko-Sarsat, V., Friedlander, M., Nguyen Khoa, T., et al. Advanced oxidation protein products as novel mediators of inflammation and monocyte activation in chronic renal failure. J Immunol. 1998;161(5):2524–2532
  17. Vlassara, H., Cai, W., Crandall, J., et al. Inflammatory mediators are induced by dietary glycotoxins, a major risk factor for diabetic angiopathy. Proc Natl Acad Sci USA. 2002;99(24):15596–15601
  18. Martinon, F., Pétrilli, V., Mayor, A., Tardivel, A., and Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440(7081):237–241
  19. Alvarez-Lario, B., and Macarrón-Vicente, J. Is there anything good in uric acid? QJM. 2011;
  20. Nguyen Khoa, T., Massy, Z. A., Witko-Sarsat, V., et al. Oxidized low-density lipoprotein induces macrophage respiratory burst via its protein moiety: A novel pathway in atherogenesis? Biochem Biophys Res Commun. 1999;263(3):804–809
  21. Au-Yeung, K. K. W., Yip, J. C. W., Siow, Y. L., and O, K. Folic acid inhibits homocysteine-induced superoxide anion production and nuclear factor kappa B activation in macrophages. Can. J. Physiol. Pharmacol. 2006;84(1):141–147
  22. Green, S., Dobrjansky, A., Carswell, E. A., et al. Partial purification of a serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA. 1976;73(2):381–385
  23. Sethi, G., Sung, B., and Aggarwal, B. B. TNF: a master switch for inflammation to cancer. Front Biosci. 2008;13:5094–5107
  24. Meyer, O. Anti-CRP antibodies in systemic lupus erythematosus. Joint Bone Spine. 2010;77(5):384–389
  25. Windgassen, E. B., Funtowicz, L., Lunsford, T. N., Harris, L. A., and Mulvagh, S. L. C-reactive protein and high-sensitivity C-reactive protein: an update for clinicians. Postgrad Med. 2011;123(1):114–119
  26. Emerging Risk Factors Collaboration, Kaptoge, S., Di Angelantonio, E., et al. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet. 2010;375(9709):132–140
  27. Luo, P., and Wang, M.-H. Eicosanoids, β-cell function, and diabetes. Prostaglandins Other Lipid Mediat. 2011;95(1-4):1–10
  28. Serhan, C. N., and Oliw, E. Unorthodox routes to prostanoid formation: new twists in cyclooxygenase-initiated pathways. J Clin Invest. 2001;107(12):1481–1489
  29. Trayhurn, P., and Wood, I. S. Signalling role of adipose tissue: adipokines and inflammation in obesity. Biochem. Soc. Trans. 2005;33(Pt 5):1078–1081
  30. Schrager, M. A., Metter, E. J., Simonsick, E., et al. Sarcopenic obesity and inflammation in the InCHIANTI study. J Appl Physiol. 2007;102(3):919–925
  31. Fried, S. K., Bunkin, D. A., and Greenberg, A. S. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid. J Clin Endocrinol Metab. 1998;83(3):847–850
  32. Mohamed-Ali, V., Goodrick, S., Rawesh, A., et al. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J Clin Endocrinol Metab. 1997;82(12):4196–4200
  33. Ortega Martinez de Victoria, E., Xu, X., Koska, J., et al. Macrophage content in subcutaneous adipose tissue: associations with adiposity, age, inflammatory markers, and whole-body insulin action in healthy Pima Indians. Diabetes. 2009;58(2):385–393
  34. Weisberg, S. P., McCann, D., Desai, M., Rosenbaum, M., Leibel, R. L., and Ferrante, A. W. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112(12):1796–1808
  35. Nappo, F., Esposito, K., Cioffi, M., et al. Postprandial endothelial activation in healthy subjects and in type 2 diabetic patients: role of fat and carbohydrate meals. J Am Coll Cardiol. 2002;39(7):1145–1150
  36. Peairs, A. D., Rankin, J. W., and Lee, Y. W. Effects of acute ingestion of different fats on oxidative stress and inflammation in overweight and obese adults. Nutr J. 2011;10:122
  37. Myhrstad, M. C. W., Narverud, I., Telle-Hansen, V. H., et al. Effect of the fat composition of a single high-fat meal on inflammatory markers in healthy young women. Br J Nutr. 2011;106(12):1826–1835
  38. Poppitt, S. D., Keogh, G. F., Lithander, F. E., et al. Postprandial response of adiponectin, interleukin-6, tumor necrosis factor-alpha, and C-reactive protein to a high-fat dietary load. Nutrition. 2008;24(4):322–329
  39. Payette, C., Blackburn, P., Lamarche, B., et al. Sex differences in postprandial plasma tumor necrosis factor-alpha, interleukin-6, and C-reactive protein concentrations. Metab. Clin. Exp. 2009;58(11):1593–1601
  40. Mozaffarian, D., and Pischon, T. Dietary intake of trans fatty acids and systemic inflammation in women. American Journal of …. 2004
  41. Lopez-Garcia, E., Schulze, M. B., Meigs, J. B., et al. Consumption of trans fatty acids is related to plasma biomarkers of inflammation and endothelial dysfunction. J Nutr. 2005;135(3):562–566
  42. Nielsen, B. M., Nielsen, M. M., Jakobsen, M. U., et al. A cross-sectional study on trans-fatty acids and risk markers of CHD among middle-aged men representing a broad range of BMI. Br J Nutr. 2011;106(8):1245–1252
  43. Bendsen, N. T., Stender, S., Szecsi, P. B., et al. Effect of industrially produced trans fat on markers of systemic inflammation: evidence from a randomized trial in women. The Journal of Lipid Research. 2011;52(10):1821–1828
  44. Ahmadi N, Eshaghian S, Huizenga R, et al. Effects of intense exercise and moderate caloric restriction on cardiovascular risk factors and inflammation. Am J Med. 2011;124(10):978-82.
  45. González O, Tobia C, Ebersole J, et al. Caloric restriction and chronic inflammatory diseases. Oral Dis. 2012;18(1):16-31.
  46. Gilliver, S. C. Sex steroids as inflammatory regulators. J. Steroid Biochem. Mol. Biol. 2010;120(2-3):105–115
  47. Keller, E. T., Chang, C., and Ershler, W. B. Inhibition of NFkappaB activity through maintenance of IkappaBalpha levels contributes to dihydrotestosterone-mediated repression of the interleukin-6 promoter. J Biol Chem. 1996;271(42):26267–26275
  48. Ray, P., Ghosh, S. K., Zhang, D. H., and Ray, A. Repression of interleukin-6 gene expression by 17 beta-estradiol: inhibition of the DNA-binding activity of the transcription factors NF-IL6 and NF-kappa B by the estrogen receptor. FEBS letters. 1997;409(1):79–85
  49. Deshpande, R., Khalili, H., Pergolizzi, R. G., Michael, S. D., and Chang, M. D. Estradiol down-regulates LPS-induced cytokine production and NFkB activation in murine macrophages. Am. J. Reprod. Immunol. 1997;38(1):46–54
  50. Maggio, M., Basaria, S., Ble, A., et al. Correlation between testosterone and the inflammatory marker soluble interleukin-6 receptor in older men. J Clin Endocrinol Metab. 2006;91(1):345–347
  51. Khosla, S., Atkinson, E. J., Dunstan, C. R., and O'Fallon, W. M. Effect of estrogen versus testosterone on circulating osteoprotegerin and other cytokine levels in normal elderly men. J Clin Endocrinol Metab. 2002;87(4):1550–1554
  52. Gameiro, C., and Romao, F. Changes in the immune system during menopause and aging. Front Biosci (Elite Ed). 2010;2:1299–1303
  53. Kane, S. V., and Reddy, D. Hormonal replacement therapy after menopause is protective of disease activity in women with inflammatory bowel disease. Am J Gastroenterol. 2008;103(5):1193–1196
  54. Vural, P., Akgul, C., and Canbaz, M. Effects of hormone replacement therapy on plasma pro-inflammatory and anti-inflammatory cytokines and some bone turnover markers in postmenopausal women. Pharmacol. Res. 2006;54(4):298–302
  55. Anderson, G. L., Limacher, M., Assaf, A. R., et al. Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: the Women's Health Initiative randomized controlled trial. JAMA. 2004;291(14):1701–1712
  56. Arnson, Y., Shoenfeld, Y., and Amital, H. Effects of tobacco smoke on immunity, inflammation and autoimmunity. J. Autoimmun. 2010;34(3):J258–65
  57. Lee, J., Taneja, V., and Vassallo, R. Cigarette Smoking and Inflammation: Cellular and Molecular Mechanisms. J. Dent. Res. 2011;
  58. Vgontzas, A. N., Papanicolaou, D. A., Bixler, E. O., Kales, A., Tyson, K., and Chrousos, G. P. Elevation of plasma cytokines in disorders of excessive daytime sleepiness: role of sleep disturbance and obesity. J Clin Endocrinol Metab. 1997;82(5):1313–1316
  59. Vgontzas, A. N., Papanicolaou, D. A., Bixler, E. O., et al. Sleep apnea and daytime sleepiness and fatigue: relation to visceral obesity, insulin resistance, and hypercytokinemia. J Clin Endocrinol Metab. 2000;85(3):1151–1158
  60. Vgontzas, A. N., Zoumakis, M., Bixler, E. O., et al. Impaired nighttime sleep in healthy old versus young adults is associated with elevated plasma interleukin-6 and cortisol levels: physiologic and therapeutic implications. J Clin Endocrinol Metab. 2003;88(5):2087–2095
  61. Trakada, G., Chrousos, G., Pejovic, S., and Vgontzas, A. Sleep Apnea and its association with the Stress System, Inflammation, Insulin Resistance and Visceral Obesity. Sleep Med Clin. 2007;2(2):251–261
  62. Slade, G. D., Ghezzi, E. M., Heiss, G., Beck, J. D., Riche, E., and Offenbacher, S. Relationship between periodontal disease and C-reactive protein among adults in the Atherosclerosis Risk in Communities study. Arch Intern Med. 2003;163(10):1172–1179
  63. Pradeep, A. R., Kathariya, R., Arjun Raju, P., Sushma Rani, R., Sharma, A., and Raghavendra, N. M. Risk factors for chronic kidney diseases may include periodontal diseases, as estimated by the correlations of plasma pentraxin-3 levels: a case-control study. Int Urol Nephrol. 2011;
  64. Vaishnava, P., Narayan, R., and Fuster, V. Understanding systemic inflammation, oral hygiene, and cardiovascular disease. Am. J. Med. 2011;124(11):997–999
  65. Pervanidou, P., and Chrousos, G. P. Metabolic consequences of stress during childhood and adolescence. Metab. Clin. Exp. 2011;
  66. van Westerloo, D. J. The vagal immune reflex: a blessing from above. Wien Med Wochenschr. 2010;160(5-6):112–117
  67. Pontet, J., Contreras, P., Curbelo, A., et al. Heart rate variability as early marker of multiple organ dysfunction syndrome in septic patients. J Crit Care. 2003;18(3):156–163
  68. Taylor, L., Loerbroks, A., Herr, R. M., Lane, R. D., Fischer, J. E., and Thayer, J. F. Depression and smoking: mediating role of vagal tone and inflammation. Ann Behav Med. 2011;42(3):334–340
  69. Basta G, Schmidt AM, De Caterina R. Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovasc Res. 2004 Sep 1;63(4):582-92.
  70. Uribarri J, Cai W, Sandu O, Peppa M, Goldberg T, Vlassara H. Diet-derived advanced glycation end products are major contributors to the body’s AGE pool and induce inflammation in healthy subjects. Ann N Y Acad Sci. 2005 Jun;1043:461-6.
  71. Toma L, Stancu CS, Botez GM, Sima AV, Simionescu M. Irreversibly glycated LDL induce oxidative and inflammatory state in human endothelial cells; added effect of high glucose. Biochem Biophys Res Commun. 2009 Dec 18;390(3):877-82.
  72. Henry-Vitrac C, Ibarra A, Roller M, Merillon JM, Vitrac X. Contribution of chlorogenic acids to the inhibition of human hepatic glucose-6-phosphatase activity in vitro by Svetol, a standardized decaffeinated green coffee extract. J Agric Food Chem. 2010 Apr 14;58(7):4141-4.
  73. Andrade-Cetto A, Vazquez RC. Gluconeogenesis inhibition and phytochemical composition of two Cecropia species. J Ethnopharmacol. 2010 Jul 6;130(1):93-7.
  74. Rodriguez de Sotillo DV, Hadley M, Sotillo JE. Insulin receptor exon 11+/- is expressed in Zucker (fa/fa) rats, and chlorogenic acid modifies their plasma insulin and liver protein and DNA. J Nutr Biochem. 2006 Jan;17(1):63-71.
  75. Nagendran MV. Effect of green coffee bean extract (GCE), High in Chlorogenic Acids, on Glucose Metabolism. Poster presentation number: 45-LB-P. Obesity 2011, the 29th Annual Scientific Meeting of the Obesity Society. Orlando, Florida. October 1-5, 2011.
  76. Aggarwal, B. B., Shishodia, S., Sandur, S. K., Pandey, M. K., and Sethi, G. Inflammation and cancer: how hot is the link? Biochem. Pharmacol. 2006;72(11):1605–1621
  77. Balkwill, F. Tumour necrosis factor and cancer. Nat. Rev. Cancer. 2009;9(5):361–371
  78. Pickup, J. C., Chusney, G. D., Thomas, S. M., and Burt, D. Plasma interleukin-6, tumour necrosis factor alpha and blood cytokine production in type 2 diabetes. Life Sci. 2000;67(3):291–300
  79. Hong, T., Tan, A. G., Mitchell, P., and Wang, J. J. A review and meta-analysis of the association between C-reactive protein and age-related macular degeneration. Surv Ophthalmol. 2011;56(3):184–194
  80. Dantzer, R. Depression and inflammation: an intricate relationship. Biol. Psychiatry. 2012;71(1):4–5
  81. Gimeno, D., Kivimäki, M., Brunner, E. J., et al. Associations of C-reactive protein and interleukin-6 with cognitive symptoms of depression: 12-year follow-up of the Whitehall II study. Psychol Med. 2009;39(3):413–423
  82. Copeland, W. E., Shanahan, L., Worthman, C., Angold, A., and Costello, E. J. Cumulative depression episodes predict later C-reactive protein levels: a prospective analysis. Biol. Psychiatry. 2012;71(1):15–21
  83. Yaffe, K., Lindquist, K., Penninx, B. W., et al. Inflammatory markers and cognition in well-functioning African-American and white elders. Neurology. 2003;61(1):76–80
  84. Kaser, A., and Tilg, H. “Metabolic aspects” in inflammatory bowel diseases. Curr Drug Deliv. 2011;
  85. Kadetoff, D., Lampa, J., Westman, M., Andersson, M., and Kosek, E. Evidence of central inflammation in fibromyalgia - Increased cerebrospinal fluid interleukin-8 levels. J. Neuroimmunol. 2011;
  86. Rolland, Y., Abellan van Kan, G., Gillette-Guyonnet, S., and Vellas, B. Cachexia versus sarcopenia. Current Opinion in Clinical Nutrition and Metabolic Care. 2011;14(1):15–21
  87. Groesdonk HV et al. [Anti-inflammatory effects of pentoxifylline: importance in cardiac surgery]. Anaesthesist. 2009 Nov;58(11):1136-43. Review. German.
  88. Li W et al. Systematic review on the treatment of pentoxifylline in patients with non-alcoholic fatty liver disease. Lipids Health Dis. 2011 Apr 8;10:49. Review.
  89. Lopes de Jesus CC et al. lline for diabetic retinopathy. Cochrane Database Syst Rev. 2008 Apr 16;(2):CD006693. Review.
  90. Lv D et al. Pentoxifylline versus medical therapies for subfertile women with endometriosis. Cochrane Database Syst Rev. 2009 Jul 8;(3):CD007677. Review.
  91. Hepgul G et al. Preventive effect of pentoxifylline on acute radiation damage via antioxidant and anti-inflammatory pathways. Dig Dis Sci. 2010 Mar;55(3):617-25. Epub 2009 Mar 18.
  92. Goicoechea M et al. Effects of pentoxifylline on inflammatory parameters in chronic kidney disease patients: a randomized trial. J Nephrol. 2012 Jan 11:0. doi: 10.5301/jn.5000077. [Epub ahead of print]
  93. Gupta SK et al. Anti-inflammatory treatment with pentoxifylline improves HIV-related endothelial dysfunction: a pilot study. AIDS. 2010 Jun 1;24(9):1377-80.
  94. Izadpanah F et al. Effect of intravenous pentoxifylline in inflammatory response in patients undergoing nephrolithotomy. J Endourol. 2009 Feb;23(2):323-8.
  95. Maiti R et al. Effect of Pentoxifylline on inflammatory burden, oxidative stress and platelet aggregability in hypertensive type 2 diabetes mellitus patients. Vascul Pharmacol. 2007 Aug-Sep;47(2-3):118-24. Epub 2007 Jun 2.
  96. Molavi, B., Rassouli, N., Bagwe, S., and Rasouli, N. A review of thiazolidinediones and metformin in the treatment of type 2 diabetes with focus on cardiovascular complications. Vasc Health Risk Manag. 2007;3(6):967–973
  97. Buler, M., Aatsinki, S.-M., Skoumal, R., et al. Energy-sensing Factors Coactivator Peroxisome Proliferator-activated Receptor γ Coactivator 1-α (PGC-1α) and AMP-activated Protein Kinase Control Expression of Inflammatory Mediators in Liver: INDUCTION OF INTERLEUKIN 1 RECEPTOR ANTAGONIST. J Biol Chem. 2012;287(3):1847–1860
  98. Sobel, B. E., Hardison, R. M., Genuth, S., et al. Profibrinolytic, antithrombotic, and antiinflammatory effects of an insulin-sensitizing strategy in patients in the Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D) trial. Circulation. 2011;124(6):695–703
  99. Gómez-García, A., Martínez Torres, G., Ortega-Pierres, L. E., Rodríguez-Ayala, E., and Alvarez-Aguilar, C. [Rosuvastatin and metformin decrease inflammation and oxidative stress in patients with hypertension and dyslipidemia]. Rev Esp Cardiol. 2007;60(12):1242–1249
  100. Pruski, M., Krysiak, R., and Okopien, B. Pleiotropic action of short-term metformin and fenofibrate treatment, combined with lifestyle intervention, in type 2 diabetic patients with mixed dyslipidemia. Diabetes Care. 2009;32(8):1421–1424
  101. Patrono C, Rocca B. Aspirin: promise and resistance in the new millennium. Arterioscler Thromb Vasc Biol. 2008;28(3):s25-32.
  102. Rothwell PM, Fowkes FG, Belch JF, et al. Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet. 2011;377(9759):31-41.
  103. Rothwell PM, Wilson M, Elwin CE, et al. Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. Lancet. 2010;376(9754):1741-50.
  104. Salinas CA, Kwon EM, FitzGerald LM, et al. Use of aspirin and other nonsteroidal antiinflammatory medications in relation to prostate cancer risk. Am J Epidemiol. 2010;172(5):578-90.
  105. Flossmann E, Rothwell PM, British Doctors Aspirin Trial and the UK-TIA Aspirin Trial. Effect of aspirin on long-term risk of colorectal cancer: consistent evidence from randomised and observational studies. Lancet. 2007;369(9573):1603-13.
  106. Sobolewski, C., Cerella, C., Dicato, M., Ghibelli, L., and Diederich, M. The role of cyclooxygenase-2 in cell proliferation and cell death in human malignancies. Int J Cell Biol. 2010;2010:215158
  107. Weber, C., Erl, W., Pietsch, A., and Weber, P. C. Aspirin inhibits nuclear factor-kappa B mobilization and monocyte adhesion in stimulated human endothelial cells. Circulation. 1995;91(7):1914–1917
  108. Ikonomidis, I., Andreotti, F., Economou, E., Stefanadis, C., Toutouzas, P., and Nihoyannopoulos, P. Increased proinflammatory cytokines in patients with chronic stable angina and their reduction by aspirin. Circulation. 1999;100(8):793–798
  109. Chen, Y.-G., Xu, F., Zhang, Y., et al. Effect of aspirin plus clopidogrel on inflammatory markers in patients with non-ST-segment elevation acute coronary syndrome. Chin. Med. J. 2006;119(1):32–36
  110. Solheim, S., Arnesen, H., Eikvar, L., Hurlen, M., and Seljeflot, I. Influence of aspirin on inflammatory markers in patients after acute myocardial infarction. Am J Cardiol. 2003;92(7):843–845
  111. Solheim, S., Pettersen, A. A., Arnesen, H., and Seljeflot, I. No difference in the effects of clopidogrel and aspirin on inflammatory markers in patients with coronary heart disease. Thromb. Haemost. 2006;96(5):660–664
  112. Serhan, C. N., Hong, S., Gronert, K., et al. Resolvins: A Family of Bioactive Products of Omega-3 Fatty Acid Transformation Circuits Initiated by Aspirin Treatment that Counter Proinflammation Signals. Journal of Experimental Medicine. 2002;196(8):1025–1037
  113. Stancu, C., and Sima, A. Statins: mechanism of action and effects. J. Cell. Mol. Med. 2001;5(4):378–387
  114. Bu, D.-X., Griffin, G., and Lichtman, A. H. Mechanisms for the anti-inflammatory effects of statins. Curr. Opin. Lipidol. 2011;22(3):165–170
  115. Ridker, P. M., Danielson, E., Fonseca, F. A. H., et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008;359(21):2195–2207
  116. Bulcão, C., Giuffrida, F. M. A., Ribeiro-Filho, F. F., and Ferreira, S. R. G. Are the beneficial cardiovascular effects of simvastatin and metformin also associated with a hormone-dependent mechanism improving insulin sensitivity? Braz. J. Med. Biol. Res. 2007;40(2):229–235
  117. Galland, L. Diet and inflammation. Nutr Clin Pract. 2010;25(6):634–640
  118. Levitan, E. B., Cook, N. R., Stampfer, M. J., et al. Dietary glycemic index, dietary glycemic load, blood lipids, and C-reactive protein. Metabolism. 2008;57(3):437–443
  119. Du, H., van der A, D. L., van Bakel, M. M. E., et al. Glycemic index and glycemic load in relation to food and nutrient intake and metabolic risk factors in a Dutch population. American Journal of Clinical Nutrition. 2008;87(3):655–661
  120. North, C. J., Venter, C. S., and Jerling, J. C. The effects of dietary fibre on C-reactive protein, an inflammation marker predicting cardiovascular disease. Eur J Clin Nutr. 2009;63(8):921–933
  121. Moschen, A. R., Molnar, C., Geiger, S., et al. Anti-inflammatory effects of excessive weight loss: potent suppression of adipose interleukin 6 and tumour necrosis factor alpha expression. Gut. 2010;59(9):1259–1264
  122. Cavicchia, P. P., Steck, S. E., Hurley, T. G., et al. A new dietary inflammatory index predicts interval changes in serum high-sensitivity C-reactive protein. Journal of Nutrition. 2009;139(12):2365–2372
  123. Bruunsgaard, H. Physical activity and modulation of systemic low-level inflammation. J Leukoc Biol. 2005;78(4):819–835
  124. Ma, Y., Hébert, J., Li, W., and Bertone-Johnson, E. Association between dietary fiber and markers of systemic inflammation in the Women's Health Initiative Observational Study. Nutrition. 2008;
  125. Chacko, S., Song, Y., Nathan, L., and Tinker, L. Relations of dietary magnesium intake to biomarkers of inflammation and endothelial dysfunction in an ethnically diverse cohort of postmenopausal women. Diabetes. 2010;
  126. de Oliveira Otto, M. C. C., Alonso, A., Lee, D.-H., et al. Dietary micronutrient intakes are associated with markers of inflammation but not with markers of subclinical atherosclerosis. Journal of Nutrition. 2011;141(8):1508–1515
  127. Krishnan, A. V., Trump, D. L., Johnson, C. S., and Feldman, D. The role of vitamin D in cancer prevention and treatment. Endocrinol. Metab. Clin. North Am. 2010;39(2):401–18, table of contents
  128. Guillot, X., Semerano, L., Saidenberg-Kermanac'h, N., Falgarone, G., and Boissier, M.-C. Vitamin D and inflammation. Joint Bone Spine. 2010;77(6):552–557
  129. Awad, A. B., Alappat, L., and Valerio, M. Vitamin d and metabolic syndrome risk factors: evidence and mechanisms. Crit Rev Food Sci Nutr. 2012;52(2):103–112
  130. Reid, D., Toole, B. J., Knox, S., et al. The relation between acute changes in the systemic inflammatory response and plasma 25-hydroxyvitamin D concentrations after elective knee arthroplasty. American Journal of Clinical Nutrition. 2011;93(5):1006–1011
  131. Liu, L. C. Y., Voors, A. A., van Veldhuisen, D. J., et al. Vitamin D status and outcomes in heart failure patients. Eur. J. Heart Fail. 2011;13(6):619–625
  132. Jablonski, K. L., Chonchol, M., Pierce, G. L., Walker, A. E., and Seals, D. R. 25-Hydroxyvitamin D deficiency is associated with inflammation-linked vascular endothelial dysfunction in middle-aged and older adults. Hypertension. 2011;57(1):63–69
  133. Meydani M. Vitamin E and atherosclerosis: beyond prevention of LDL oxidation. J Nutr. 2001Feb;131(2):366S-8S.
  134. Jiang Q, Elson-Schwab I, Courtemanche C, Ames BN. gamma-tocopherol and its major metabolite, in contrast to alpha-tocopherol, inhibit cyclooxygenase activity in macrophages and epithelial cells. Proc Natl Acad Sci USA. 2000 Oct 10;97(21):11494-9.
  135. Sjoholm A, Berggren PO, Cooney RV. gamma-tocopherol partially protects insulin-secreting cells against functional inhibition by nitric oxide. Biochem Biophys Res Commun. 2000 Oct 22;277(2):334-40.
  136. Devaraj S, Leonard S, Traber MG, et al. Gamma-tocopherol supplementation alone and in combination with alpha-tocopherol alters biomarkers of oxidative stress and inflammation in subjects with metabolic syndrome. Free Radic Biol Med. 2008;44(6):1203-8.
  137. Prasad, A. S. Zinc: role in immunity, oxidative stress and chronic inflammation. Current Opinion in Clinical Nutrition and Metabolic Care. 2009;12(6):646–652
  138. Duntas, L. H. Selenium and inflammation: underlying anti-inflammatory mechanisms. Horm. Metab. Res. 2009;41(6):443–447
  139. Kelishadi, R., Hashemipour, M., Adeli, K., et al. Effect of zinc supplementation on markers of insulin resistance, oxidative stress, and inflammation among prepubescent children with metabolic syndrome. Metab Syndr Relat Disord. 2010;8(6):505–510
  140. Wong, C. P., and Ho, E. Zinc and its role in age-related inflammation and immune dysfunction. Mol. Nutr. Food Res. 2011;
  141. Bao, B., Prasad, A. S., Beck, F. W. J., et al. Zinc decreases C-reactive protein, lipid peroxidation, and inflammatory cytokines in elderly subjects: a potential implication of zinc as an atheroprotective agent. American Journal of Clinical Nutrition. 2010;91(6):1634–1641
  142. Kahmann, L., Uciechowski, P., Warmuth, S., et al. Zinc supplementation in the elderly reduces spontaneous inflammatory cytokine release and restores T cell functions. Rejuvenation Res. 2008;11(1):227–237
  143. Mariani, E., Cattini, L., Neri, S., et al. Simultaneous evaluation of circulating chemokine and cytokine profiles in elderly subjects by multiplex technology: relationship with zinc status. Biogerontology. 2006;7(5-6):449–459
  144. Maehira, F., Luyo, G. A., Miyagi, I., et al. Alterations of serum selenium concentrations in the acutephase of pathological conditions. Clin. Chim. Acta. 2002;316(1-2):137–146
  145. Jha, R. K., Ma, Q., Sha, H., and Palikhe, M. Emerging role of resveratrol in the treatment of severe acute pancreatitis. Front Biosci (Schol Ed). 2010;2:168–175
  146. Khanduja, K. L., Bhardwaj, A., and Kaushik, G. Resveratrol inhibits N-nitrosodiethylamine-induced ornithine decarboxylase and cyclooxygenase in mice. J. Nutr. Sci. Vitaminol. 2004;50(1):61–65
  147. Pan, Z., Agarwal, A. K., Xu, T., et al. Identification of molecular pathways affected by pterostilbene, a natural dimethylether analog of resveratrol. BMC Med Genomics. 2008;1:7
  148. Clarke, J. O., and Mullin, G. E. A review of complementary and alternative approaches to immunomodulation. Nutrition in Clinical Practice. 2008;23(1):49–62
  149. Ghanim, H., Sia, C. L., Korzeniewski, K., et al. A resveratrol and polyphenol preparation suppresses oxidative and inflammatory stress response to a high-fat, high-carbohydrate meal. J Clin Endocrinol Metab. 2011;96(5):1409–1414
  150. Chainani-Wu, N. Safety and anti-inflammatory activity of curcumin: a component of turmeric (Curcuma longa). J Altern Complement Med. 2003;9(1):161–168
  151. Bengmark, S. Curcumin, an atoxic antioxidant and natural NFkappaB, cyclooxygenase-2, lipooxygenase, and inducible nitric oxide synthase inhibitor: a shield against acute and chronic diseases. JPEN J Parenter Enteral Nutr. 2006;30(1):45–51
  152. Epstein, J., Docena, G., Macdonald, T. T., and Sanderson, I. R. Curcumin suppresses p38 mitogen-activated protein kinase activation, reduces IL-1beta and matrix metalloproteinase-3 and enhances IL-10 in the mucosa of children and adults with inflammatory bowel disease. Br J Nutr. 2010;103(6):824–832
  153. White, B., and Judkins, D. Z. Clinical Inquiry. Does turmeric relieve inflammatory conditions? J Fam Pract. 2011;60(3):155–156
  154. Singh, R., Akhtar, N., and Haqqi, T. M. Green tea polyphenol epigallocatechin-3-gallate: inflammation and arthritis. [corrected]. Life Sci. 2010;86(25-26):907–918
  155. de Mejia, E. G., Ramirez-Mares, M. V., and Puangpraphant, S. Bioactive components of tea: cancer, inflammation and behavior. Brain Behav. Immun. 2009;23(6):721–731
  156. Melgarejo, E., Medina, M. A., Sánchez-Jiménez, F., and Urdiales, J. L. Targeting of histamine producing cells by EGCG: a green dart against inflammation? J. Physiol. Biochem. 2010;66(3):265–270
  157. De Bacquer, D., Clays, E., Delanghe, J., and De Backer, G. Epidemiological evidence for an association between habitual tea consumption and markers of chronic inflammation. Atherosclerosis. 2006;189(2):428–435
  158. Steptoe, A., Gibson, E. L., Vuononvirta, R., et al. The effects of chronic tea intake on platelet activation and inflammation: a double-blind placebo controlled trial. Atherosclerosis. 2007;193(2):277–282
  159. Bahorun, T., Luximon-Ramma, A., Gunness, T. K., et al. Black tea reduces uric acid and C-reactive protein levels in humans susceptible to cardiovascular diseases. Toxicology. 2010;278(1):68–74
  160. Walston, J., Xue, Q., Semba, R. D., et al. Serum antioxidants, inflammation, and total mortality in older women. Am. J. Epidemiol. 2006;163(1):18–26
  161. Heffner, K. L. Neuroendocrine effects of stress on immunity in the elderly: implications for inflammatory disease. Immunol Allergy Clin North Am. 2011;31(1):95–108
  162. Gordon, C. M., LeBoff, M. S., and Glowacki, J. Adrenal and gonadal steroids inhibit IL-6 secretion by human marrow cells. Cytokine. 2001;16(5):178–186
  163. Ernestam, S., Hafström, I., Werner, S., Carlström, K., and Tengstrand, B. Increased DHEAS levels in patients with rheumatoid arthritis after treatment with tumor necrosis factor antagonists: evidence for improved adrenal function. The Journal of Rheumatology. 2007;34(7):1451–1458
  164. Weiss, E. P., Villareal, D. T., Fontana, L., Han, D.-H., and Holloszy, J. O. Dehydroepiandrosterone (DHEA) replacement decreases insulin resistance and lowers inflammatory cytokines in aging humans. Aging. 2011;3(5):533–542
  165. Marik, P. E., and Varon, J. Omega-3 dietary supplements and the risk of cardiovascular events: a systematic review. Clin Cardiol. 2009;32(7):365–372
  166. Calder, P. C. n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr. 2006;83(6 Suppl):1505S–1519S
  167. Giugliano, D., Ceriello, A., and Esposito, K. The Effects of Diet on Inflammation. J Am Coll Cardiol. 2006;48(4):677–685
  168. Pischon, T., Hankinson, S. E., Hotamisligil, G. S., Rifai, N., Willett, W. C., and Rimm, E. B. Habitual dietary intake of n-3 and n-6 fatty acids in relation to inflammatory markers among US men and women. Circulation. 2003;108(2):155–160
  169. Lopez-Garcia, E., Schulze, M. B., Manson, J. E., et al. Consumption of (n-3) fatty acids is related to plasma biomarkers of inflammation and endothelial activation in women. J Nutr. 2004;134(7):1806–1811
  170. Zampelas, A., Panagiotakos, D. B., Pitsavos, C., et al. Fish consumption among healthy adults is associated with decreased levels of inflammatory markers related to cardiovascular disease: the ATTICA study. J Am Coll Cardiol. 2005;46(1):120–124.
  171. He, K., Liu, K., Daviglus, M. L., et al. Associations of dietary long-chain n-3 polyunsaturated fatty acids and fish with biomarkers of inflammation and endothelial activation (from the Multi-Ethnic Study of Atherosclerosis [MESA]). Am J Cardiol. 2009;103(9):1238–1243
  172. Araki, S., Dobashi, K., Kubo, K., Kawagoe, R., Yamamoto, Y., and Shirahata, A. N-acetylcysteine inhibits induction of nitric oxide synthase in 3T3-L1 adipocytes. J. UOEH. 2007;29(4):417–429
  173. Radomska-Leśniewska, D. M., Sadowska, A. M., Van Overveld, F. J., Demkow, U., Zieliński, J., and De Backer, W. A. Influence of N-acetylcysteine on ICAM-1 expression and IL-8 release from endothelial and epithelial cells. J. Physiol. Pharmacol. 2006;57 Suppl 4:325–334
  174. Nascimento, M. M., Suliman, M. E., Silva, M., et al. Effect of oral N-acetylcysteine treatment on plasma inflammatory and oxidative stress markers in peritoneal dialysis patients: a placebo-controlled study. Perit Dial Int. 2010;30(3):336–342
  175. Csontos, C., Rezman, B., Foldi, V., et al. Effect of N-acetylcysteine treatment on the expression of leukocyte surface markers after burn injury. Burns. 2011;37(3):453–464
  176. Boswellia serrata. Altern Med Rev. 2008;13(2):165–167
  177. Gayathri, B., Manjula, N., Vinaykumar, K. S., Lakshmi, B. S., and Balakrishnan, A. Pure compound from Boswellia serrata extract exhibits anti-inflammatory property in human PBMCs and mouse macrophages through inhibition of TNFalpha, IL-1beta, NO and MAP kinases. International Immunopharmacology. 2007;7(4):473–482
  178. Cuaz-Pérolin, C., Billiet, L., Baugé, E., et al. Antiinflammatory and antiatherogenic effects of the NF-kappaB inhibitor acetyl-11-keto-beta-boswellic acid in LPS-challenged ApoE-/- mice. Arteriosclerosis, Thrombosis, and Vascular Biology. 2008;28(2):272–277
  179. Singh, S., Khajuria, A., Taneja, S. C., Johri, R. K., Singh, J., and Qazi, G. N. Boswellic acids: A leukotriene inhibitor also effective through topical application in inflammatory disorders. Phytomedicine. 2008;15(6-7):400–407
  180. Ernst, E. Frankincense: systematic review. BMJ. 2008;337:a2813
  181. Sengupta, K., Alluri, K. V., Satish, A. R., et al. A double blind, randomized, placebo controlled study of the efficacy and safety of 5-Loxin for treatment of osteoarthritis of the knee. Arthritis Res. Ther. 2008;10(4):R85
  182. Sengupta, K., Krishnaraju, A. V., Vishal, A. A., et al. Comparative efficacy and tolerability of 5-Loxin and AflapinAgainst osteoarthritis of the knee: a double blind, randomized, placebo controlled clinical study. Int J Med Sci. 2010;7(6):366–377
  183. Gupta, I., Parihar, A., Malhotra, P., et al. Effects of Boswellia serrata gum resin in patients with ulcerative colitis. Eur. J. Med. Res. 1997;2(1):37–43
  184. Gupta, I., Parihar, A., Malhotra, P., et al. Effects of gum resin of Boswellia serrata in patients with chronic colitis. Planta Med. 2001;67(5):391–395
  185. Holtmeier, W., Zeuzem, S., Preiss, J., et al. Randomized, placebo-controlled, double-blind trial of Boswellia serrata in maintaining remission of Crohn's disease: good safety profile but lack of efficacy. Inflamm. Bowel Dis. 2011;17(2):573–582
  186. Shimizu, S., Akimoto, K., Shinmen, Y., Kawashima, H., Sugano, M., and Yamada, H. Sesamin is a potent and specific inhibitor of delta 5 desaturase in polyunsaturated fatty acid biosynthesis. Lipids. 1991;26(7):512–516
  187. Harikumar, K. B., Sung, B., Tharakan, S. T., et al. Sesamin manifests chemopreventive effects through the suppression of NF-kappa B-regulated cell survival, proliferation, invasion, and angiogenic gene products. Mol. Cancer Res. 2010;8(5):751–761
  188. Chavali, S. R., Zhong, W. W., Utsunomiya, T., and Forse, R. A. Decreased production of interleukin-1-beta, prostaglandin-E2 and thromboxane-B2, and elevated levels of interleukin-6 and -10 are associated with increased survival during endotoxic shock in mice consuming diets enriched with sesame seed oil supplemented with Quil-A saponin. Int. Arch. Allergy Immunol. 1997;114(2):153–160
  189. Wu, J. H. Y., Hodgson, J. M., Clarke, M. W., et al. Inhibition of 20-hydroxyeicosatetraenoic acid synthesis using specific plant lignans: in vitro and human studies. Hypertension. 2009;54(5):1151–1158
  190. Miyawaki, T., Aono, H., Toyoda-Ono, Y., Maeda, H., Kiso, Y., and Moriyama, K. Antihypertensive effects of sesamin in humans. J. Nutr. Sci. Vitaminol. 2009;55(1):87–91
  191. Yuan, G., Wahlqvist, M. L., He, G., Yang, M., and Li, D. Natural products and anti-inflammatory activity. Asia Pac J Clin Nutr. 2006;15(2):143–152
  192. Bromelain. Monograph. Altern Med Rev. 2010;15(4):361–368
  193. Klein G, Kullich W, Schnitker J, Schwann H. Efficacy and tolerance of an oral enzyme combination in painful osteoarthritis of the hip. A double-blind, randomised study comparing oral enzymes with non-steroidal anti-inflammatory drugs. Clin Exp Rheumatol. 2006 Jan-Feb;24(1):25-30.
  194. Akhtar NM, Naseer R, Farooqi AZ, Aziz W, Nazir M. Oral enzyme combination versus diclofenac in the treatment of osteoarthritis of the knee—a double-blind prospective randomized study. Clin Rheumatol. 2004 Oct;23(5):410-5
  195. Walker AF, Bundy R, Hicks SM, Middleton RW. Bromelain reduces mild acute knee pain and improves well-being in a dose-dependent fashion in an open study of otherwise healthy adults. Phytomedicine. 2002 Dec;9(8):681-6.
  196. Fitzhugh DJ et al. Bromelain treatment decreases neutrophil migration to sites of inflammation. Clin Immunol. 2008 Jul;128(1):66-74. Epub 2008 May 14.
  197. Secor ER et al. Oral Bromelain Attenuates Inflammation in an Ovalbumin-induced Murine Model of Asthma. Evid Based Complement Alternat Med. 2008 Mar;5(1):61-9.
  198. Onken JE et al. Bromelain treatment decreases secretion of pro-inflammatory cytokines and chemokines by colon biopsies in vitro. Clin Immunol. 2008 Mar;126(3):345-52. Epub 2007 Dec 21.
  199. Secor ER et al. Bromelain exerts anti-inflammatory effects in an ovalbumin-induced murine model of allergic airway disease. Cell Immunol. 2005 Sep;237(1):68-75. Epub 2005 Dec 6.
  200. Sourris KC et al. Ubiquinone (coenzyme Q10) prevents renal mitochondrial dysfunction in an experimental model of type 2 diabetes. Free Radic Biol Med. 2012 Feb 1;52(3):716-23. Epub 2011 Nov 21.
  201. Tao r et al. Pyrroloquinoline quinone preserves mitochondrial function and prevents oxidative injury in adult rat cardiac myocytes. Biochem Biophys Res Commun. 2007 Nov 16;363(2):257-62. Epub 2007 Aug 14.
  202. Rucker R et al. Potential physiological importance of pyrroloquinoline quinone. Altern Med Rev. 2009 Sep;14(3):268-77.
  203. Xiong XH et al. Production and radioprotective effects of pyrroloquinoline quinone. Int J Mol Sci. 2011;12(12):8913-23. Epub 2011 Dec 5.
  204. Bauerly K et al. Altering pyrroloquinoline quinone nutritional status modulates mitochondrial, lipid, and energy metabolism in rats. PLoS One. 2011;6(7):e21779. Epub 2011 Jul 21.
  205. Donnino MW et al. Coenzyme Q10 levels are low and may be associated with the inflammatory cascade in septic shock. Crit Care. 2011 Aug 9;15(4):R189.
  206. Sohet FM et al. Coenzyme Q10 supplementation lowers hepatic oxidative stress and inflammation associated with diet-induced obesity in mice. Biochem Pharmacol. 2009 Dec 1;78(11):1391-400. Epub 2009 Jul 23.
  207. Schmelzer C et al. Functions of coenzyme Q10 in inflammation and gene expression. Biofactors. 2008;32(1-4):179-83.
  208. Stracke H et al. A benfotiamine-vitamin B combination in treatment of diabetic polyneuropathy. Exp Clin Endocrinol Diabetes. 1996;104(4):311-6.
  209. Stracke H et al. Benfotiamine in diabetic polyneuropathy (BENDIP): results of a randomised, double blind, placebo-controlled clinical study. Exp Clin Endocrinol Diabetes. 2008 Nov;116(10):600-5. Epub 2008 May 13.
  210. Sanchez-Ramirez GM et al. Benfotiamine relieves inflammatory and neuropathic pain in rats. Eur J Pharmacol. 2006 Jan 13;530(1-2):48-53. Epub 2005 Dec 15.
  211. Shoeb M et al. Anti-inflammatory effects of benfotiamine are mediated through the regulation of the arachidonic acid pathway in macrophages. Free Radic Biol Med. 2012 Jan 1;52(1):182-90. Epub 2011 Oct 24.
  212. Vistoli G et al. Transforming dietary peptides in promising lead compounds: the case of bioavailable carnosine analogs. Amino Acids. 2012 Jan 28. [Epub ahead of print]
  213. Fleisher-Berkovich S et al. Inhibitory effect of carnosine and N-acetyl carnosine on LPS-induced microglial oxidative stress and inflammation. Peptides. 2009 Jul;30(7):1306-12. Epub 2009 Apr 10.
  214. Tsai SJ Antioxidative and Anti-Inflammatory Protection from Carnosine in the Striatum of MPTP-Treated Mice. J Agric Food Chem. 2010 Oct 6. [Epub ahead of print]
  215. Boldyrev AA et al. [Carnosine: endogenous physiological corrector of antioxidative system activity]. Usp Fiziol Nauk. 2007 Jul-Sep;38(3):57-71.
  216. Hipkiss AR. On the enigma of carnosine’s anti-ageing actions. Exp Gerontol. 2009 Apr;44(4):237-42.
  217. Gualano B et al. Reduced muscle carnosine content in type 2, but not in type 1 diabetic patients. Amino Acids. 2011 Nov 27. [Epub ahead of print]
  218. Pfister F et al. Oral carnosine supplementation prevents vascular damage in experimental diabetic retinopathy. Cell Physiol Biochem. 2011;28(1):125-36. Epub 2011 Aug 16.