Life Extension Magazine

Life Extension Magazine December 2009

Report

Preventing Surgery-Induced Cancer Metastasis

By Steven Nemeroff, ND

By Steven Nemeroff, ND

Microscopic image of kidney carcinoma.
Microscopic image of kidney carcinoma.

Less Invasive Surgery Reduces Risk of Metastasis

Surgery places an enormous physical stress upon the body. There is considerable scientific evidence supporting that surgeries that are less invasive—and therefore less traumatic—pose less risk of metastasis, compared to more invasive and traumatic surgery. Laparoscopic surgery is one type of minimally invasive surgery, in which operations in the abdomen, pelvis, and other regions are performed through small incisions, as compared to the much larger incisions needed in traditional “open” surgeries.

A study published in the prestigious medical journal The Lancet compared laparoscopic to open surgery to remove part of the colon (colectomy) in patients with colon cancer. In contrast to the group receiving traditional open surgery, the laparoscopic surgery group had a 61% decreased risk of cancer recurrence coupled with a 62% decreased risk of death from colon cancer. The surgeons concluded that laparoscopic colectomy is more effective than open colectomy for treatment of colon cancer as assessed by tumor recurrence and cancer-related survival.71 A long-term follow-up of these patients (median time 95 months) reported a 56% decreased risk of death from colon cancer for laparoscopic surgery as compared to traditional open surgery.72 Another comparison of laparoscopic surgery to open surgery for colon cancer reported a five-year survival rate of 64.1% for the laparoscopic group, and a five-year survival rate of 58.5% for the group receiving open surgery.73

Minimally invasive surgery has produced substantial improvements in survival for those with lung cancer. Video-assisted thoracoscopic surgery (VATS), a minimally invasive surgery, was compared to traditional open surgery for removing lung tumors (lobectomy). The five-year survival from lung cancer was 97% in the VATS group. This greatly contrasts the 79% five-year survival in the open surgery group.74

Commenting on the use of minimally invasive surgery for lung cancer, surgeons at Cedars-Sinai Medical Center stated that minimally invasive surgery for lung cancer “… can be performed safely with proven advantages over conventional thoracotomy [chest surgery] for lobectomy: smaller incisions, decreased postoperative pain,…decreased blood loss, better preservation of pulmonary function, and earlier return to normal activities… the evidence in the literature is mounting that VATS may offer reduced rates of complications and better survival.”75

Administering Chemo and Radiation Therapies Prior to Surgery

Doctors at the University of North Carolina School of Medicine studied the use of combined radiation and chemotherapy prior to surgery for individuals with esophageal cancer. Twenty-six patients received surgery alone, while 30 patients received radiation and chemotherapy followed by surgery. The group receiving combined treatment had a five-year survival of 39%, while the group treated with surgery alone experienced a five-year survival of only 16%.99

A study published in the New England Journal of Medicine in 2006 compared treatment with surgery alone to treatment with chemotherapy—given both directly before and after surgery—in patients with stomach or esophageal cancer. The five-year survival for the group receiving surgery and chemotherapy was 36%, compared to a five-year survival of 23% in the group receiving surgery alone.100

Research also supports the use of chemotherapy and radiation therapy during the critical perioperative period. In one study, 544 patients with stomach cancer received combined chemotherapy and radiation therapy shortly after surgery. Survival comparisons were made with a similar group of 446 patients with stomach cancer treated with surgery alone. Postoperative chemotherapy and radiation led to a dramatic improvement in survival. The group treated with surgery alone had a median survival of only 62.6 months, compared to a median survival of 95.3 months in the group receiving postoperative radiation and chemotherapy.101 A similar study also demonstrated improved survival with the use of postoperative radiation and chemotherapy compared to surgery alone.102

Inflammation and Metastasis

Cancer surgery causes an increased production of inflammatory chemicals, such as interleukin-1 and interleukin-6.76-78 These chemicals are known to increase the activity of cyclooxygenase-2 (COX-2). A highly potent inflammatory enzyme, COX-2 plays a pivotal role in promoting cancer growth and metastasis.

This was evident in an article appearing in the journal Cancer Research that found levels of COX-2 in pancreatic cancer cells to be 60 times greater than in normal pancreatic cells.79 Levels of COX-2 were 150 times higher in cancer cells from individuals with head and neck cancers compared to normal tissue from healthy volunteers.80 COX-2 fuels cancer growth by stimulating the formation of new blood vessels feeding the tumor.81,82 COX-2 increases cancer cell adhesion to the blood vessel walls,83 and also enhances the ability of cancer cells to metastasize. Experiments in mice revealed that colon cancer cells expressing high levels of COX-2 metastasized freely to the liver, while colon cancer cells expressing low levels of COX-2 did not metastasize to the liver.83

The adverse influence of COX-2 on the growth and progression of cancer was clearly revealed in a study published in the journal Clinical Cancer Research in 2004. Two hundred eighty-eight individuals undergoing surgery for colon cancer had their tumors examined for the presence of COX-2. The findings were alarming—when other factors were controlled for, the group whose cancers tested positive for the presence of COX-2 had a 311% greater risk of death compared to the group whose cancers did not express COX-2.84 A subsequent study in lung cancer patients found that those with high tumor levels of COX-2 had a median survival of only 15 months, whereas those with low tumor levels of COX-2 had a median survival of 40 months.85

Given these findings, researchers began investigating the anti-cancer effects of COX-2 inhibitor drugs. Although initially used for inflammatory conditions, such as arthritis, COX-2 inhibitor drugs have been shown to possess powerful anti-cancer activity. For example, 134 patients with advanced lung cancer were treated with chemotherapy alone or combined with Celebrex® (a COX-2 inhibitor). For those individuals with cancers expressing higher amounts of COX-2, treatment with Celebrex® dramatically prolonged survival.86 Treatment with Celebrex® also slowed cancer progression in men with recurrent prostate cancer.87

Perhaps the most impressive display of the anti-metastatic effects of COX-2 inhibitor drugs was presented at the annual conference of the American Society of Clinical Oncology in 2008. In this study, the incidence of bone metastases in breast cancer patients who had taken a COX-2 inhibitor for at least six months following the diagnosis of breast cancer was compared to the incidence of bone metastases in breast cancer patients who had not taken a COX-2 inhibitor. Remarkably, those who were treated with a COX-2 inhibitor were almost 80% less likely to develop bone metastases than those who were not treated with a COX-2 inhibitor drug.88

Non-steroidal anti-inflammatory drugs (NSAIDs), such as aspirin and ibuprofen, are COX inhibitors. The widespread use of NSAIDs for pain and arthritis has created an ideal environment in which to examine if these drugs can prevent cancer. Large-scale studies have documented a substantial reduction in cancer risk with the use of NSAIDs. A comprehensive review of the scientific literature (91 published studies) reported that the long-term use of NSAIDs (primarily aspirin) produced risk reductions of 63% for colon cancer, 39% for breast cancer, 36% for lung cancer, 39% for prostate cancer, 73% for esophageal cancer, 62% for stomach cancer, and 47% for ovarian cancer. “This review provides compelling… evidence that regular intake of NSAIDs that… block COX-2 protects against the development of many types of cancer,” the authors concluded.89

A number of nutritional and herbal supplements are known to inhibit COX-2. These include curcumin, resveratrol, vitamin E, soy isoflavones (genistein), green tea (EGCG), quercetin, fish oil, garlic, feverfew, and silymarin (milk thistle).58,90-97

Scientists at Memorial Sloan-Kettering Cancer Center in New York created an experimentally-induced increase in COX-2 activity in human breast cells, which was completely prevented by resveratrol. Resveratrol blocked the production of COX-2 within the cell, as well as blocking COX-2 enzyme activity.98

The Choice of Surgical Anesthesia Can Influence Metastasis

Conclusion

A group of noted experts in the field of surgery-induced metastasis stated that cancer treatment “…necessitates the surgical excision of the primary tumor in order to relieve the patient of the major tumor burden, which is the main source of mutating and metastasizing cells. However, along with its obvious benefits, the surgical procedure has been suggested to involve serious hazards as it releases tumor cells into the circulation or lymphatics, promotes the secretion of angiogenic and growth factors, and induces suppression of CMI [immune function]. These consequences synergistically facilitate the establishment of new metastases and the development of preexisting micrometastases. As cancer-related death is most commonly the result of metastatic disease, it is crucial to minimize this facilitation.”55

Remarking further, they commented that “Taken together, it is evident that the perioperative period harbors many risks; however, it is also the ideal time for battling MRD [small numbers of cancer cells remaining after surgery] to reduce recurrence and future metastases.” Thus, these scientists believe “…it is essential to employ preventative interventions during this critical time.” Additionally, they urge that, “Ideally, each problematic aspect of surgery should be treated when oncological patients undergo resection [surgery] in order to minimize recurrence and metastatic spread.”55

Armed with the knowledge discussed in this article, the person with cancer can reap all the benefits that cancer surgery offers, while simultaneously avoiding the metastatic perils imposed by this procedure.

As this article was going to press, a dedicated team of clinical oncologists and researchers are preparing a meticulous report on the optimal doses of nutrients and drugs that a cancer patient should consider during the pre- and post-operative period. You can obtain a free copy of this report by logging on to our Cancer Surgery Special Report or calling 1-800-841-5433.

If you have any question on the scientific content of this article, please call a Life Extension® Health Advisor at 1-866-864-3027.

References

1. J Surg Oncol. 2006 Jul 1;94(1):68-80.

2. Ann Surg. 2009 May;249(5):727-34.

3. Cancer Metastasis Rev. 2004 Jan;23(1-2):119-35.

4. Brain Behav Immun. 2003 Feb;17 Suppl 1S27-S36.

5. Ann Surg. 2000 Jul;232(1):58-65.

6. Surgery. 1998 Sep;124(3):516-25.

7. Ann Surg Oncol. 2003 Oct;10(8):972-92.

8. Br J Cancer. 2001 Aug 17;85(4):490-2.

9. J Surg Res. 2002 Sep;107(1):1-6.

10. Cancer Metastasis Rev. 1987;6(3):433-52.

11. J Biol Chem. 2007 Jan 5;282(1):773-81.

12. Int J Cancer. 2004 Dec 20;112(6):943-50.

13. J Natl Cancer Inst. 2002 Dec 18;94(24):1854-62.

14. J Natl Cancer Inst. 1995 Mar 1;87(5):348-53.

15. J Natl Cancer Inst. 1992 Mar 18;84(6):438-42.

16. Prostate Cancer Prostatic Dis. 2003;6(4):301-4.

17. Clin Med Oncol. 2007;1:73–80.

18. Cancer Res. 2008 Jul 1;68(13):5167-76.

19. Br J Cancer. 2002 Jan 21;86(2):161-7.

20. Lancet. 1994 Dec 24;344(8939-8940):1768-9.

21. Science. 1981 Oct 2;214(4516):24-30.

22. Breast Cancer Res Treat. 2000 Apr;60(3):227-34.

23. Int Surg. 1997 Apr;82(2):190-3.

24. Br J Surg. 1993 Aug;80(8):1005-7.

25. Brain Behav Immun. 2007 May;21(4):395-408.

26. Oncol Rep. 2006 Apr;15(4):861-8.

27. Anticancer Res. 2002 May;22(3):1737-54.

28. Cancer Immunol Immunother. 2001 Jun;50(4):191-8.

29. Int J Clin Lab Res. 1999;29(4):135-40.

30. Cancer Detect Prev. 1997;21(1):71-7.

31. Cancer Biother Radiopharm. 2008 Aug;23(4):461-7.

32. Br J Cancer. 2004 Mar 8;90(5):1003-10.

33. Gan No Rinsho. 1986 Feb;32(2):181-5.

34. Lancet. 1994 May 7;343(8906):1122-6.

35. Gan To Kagaku Ryoho. 1988 Nov;15(11):3143-51.

36. Cancer. 1992 Nov 15;70(10):2475-83.

37. J Nutr. 2006 Mar;136(3 Suppl):816S-820S.

38. Carcinogenesis. 1989 Sep;10(9):1595-8.

39. J Interferon Cytokine Res. 2006 Jul;26(7):489-99.

40. J Surg Res. 1996 Jun;63(1):293-7.

41. J Hepatol. 2002 Jul;37(1):78-86.

42. Forsch Komplementmed. 2007 Feb;14(1):9-17.

43. Br J Surg. 2001 Apr;88(4):539-44.

44. Adv Exp Med Biol. 2007;595:185-95.

45. Hepatogastroenterology. 2002 Mar-Apr;49(44):385-7.

46. Ann Oncol. 2005 Jun;16(6):847-62.

47. Adv Cancer Res. 2006;95:147-202.

48. World J Gastroenterol. 2003 Mar;9(3):495-8.

49. Ribatti D. History of Research on Tumor Angiogenesis. Springer;2009:9.

50. Neuro Oncol. 2005 Apr;7(2):106-21.

51. Eur J Cancer. 2005 Mar;41(4):508-15.

52. Curr Mol Med. 2003 Nov;3(7):643-51.

53. Ann Chir Plast Esthet. 2000 Aug;45(4):485-93.

54. Presse Med. 1998 Jul 4-11;27(24):1221-4.

55. Breast Dis. 2006;26:99-114.

56. World J Gastroenterol. 2007 Feb 28;13(8):1162-9.

57. Clin Hemorheol Microcirc. 2006;34(1-2):109-15.

58. Gut. 2008 Nov;57(11):1509-17.

59. J Nutr Biochem. 2007 Jun;18(6):408-17.

60. Cancer. 2004 Jan 1;100(1):201-10.

61. Planta Med. 2006 Jun;72(8):708-14.

62. J Surg Res. 2003 Jul;113(1):133-8.

63. Am J Ther. 2004 Sep;11(5):354-65.

64. Anesth Analg. 2003 Nov;97(5):1331-9.

65. Cancer Res. 2002 Aug 1;62(15):4491-8.

66. Anesthesiology. 2001 Jun;94(6):1066-73.

67. Am J Surg. 1996 Jan;171(1):68-72.

68. Ann Surg. 1998 Apr;227(4):496-501.

69. J Huazhong Univ Sci Technolog Med Sci. 2006;26(4):478-81.

70. J Neuroimmunol. 2002 Aug;129(1-2):18-24.

71. Lancet. 2002 Jun 29;359(9325):2224-9.

72. Ann Surg. 2008 Jul;248(1):1-7.

73. Arch Surg. 2008 Sep;143(9):832-9.

74. Ann Thorac Surg. 2000 Nov;70(5):1644-6.

75. Thorac Surg Clin. 2007 May;17(2):223-31.

76. Br J Surg. 1992 Aug;79(8):757-60.

77. Dis Colon Rectum. 2003 Feb;46(2):147-55.

78. Cytokine. 2003 Dec 21;24(6):237-43.

79. Cancer Res. 1999 Mar 1;59(5):987-90.

80. Cancer Res. 1999 Mar 1;59(5):991-4.

81. Cell. 1998 May 29;93(5):705-16.

82. Mol Cancer Ther. 2003 Jan;2(1):1-7.

83. Cancer Res. 2002 Mar 1;62(5):1567-72.

84. Clin Cancer Res. 2004 Dec 15;10(24):8465-71.

85. Int J Cancer. 2005 Jul 1;115(4):545-55.

86. J Clin Oncol. 2008 Feb 20;26(6):848-55.

87. Clin Cancer Res. 2006 Apr 1;12(7 Pt 1):2172-7.

88. http://www.asco.org/ASCOv2/Meetings/Abstracts?&vmview=abst_detail_view&confID=55&abstractID=31561.

89. Oncol Rep. 2005 Apr;13(4):559-83.

90. Mol Carcinog. 2006 May;45(5):309-19.

91. Ann NY Acad Sci. 1999;889:214-23.

92. J Biol Chem. 1998 Aug 21;273(34):21875-82.

93. Carcinogenesis. 2007 Apr;28(4):809-15.

94. Mutat Res. 2004 Jul 13;551(1-2):245-54.

95. Biochem Biophys Res Commun. 1996 Sep 24;226(3):810-8.

96. Prostaglandins Leukot Essent Fatty Acids. 1995 Dec;53(6):397-400.

97. Mol Cell Biochem. 2008 Jun;313(1-2):53-61.

98. J Biol Chem. 1998 Aug 21;273(34):21875-82.

99. J Clin Oncol. 2008 Mar 1;26(7):1086-92.

100. N Engl J Med. 2006 Jul 6;355(1):11-20.

101. Int J Radiat Oncol Biol Phys. 2005 Dec 1;63(5):1279-85.

102. N Engl J Med. 2001 Sep 6;345(10):725-30.