Whole Body Health Sale

Life Extension Magazine

LE Magazine December 2001

image

Page 2 of 4

Increased urinary catechol estrogen excretion in female smokers.

Premenopausal female smokers show significantly increased estrogen 2-hydroxylation, which may account in part for the anti-estrogenic effects of cigarette smoking. We have measured five major urinary estrogens, including estradiol (E2), estrone (E1), 16 alpha-hydroxyestrone (16 alpha OHE1), estriol (E3), and 2-hydroxyestrone (2OHE1), in premenopausal female smokers and non-smokers, to determine whether increased C-2 hydroxylation affected the urinary excretory patterns in these subjects. While total measured estrogen excretion in the follicular phase did not differ significantly between the two groups, urinary 2OHE1 among the smokers constituted a significantly greater proportion of the total (31.1 vs 18.2%, P less than 0.02). This difference was largely caused by significantly increased urinary 2OHE1 and decreased E3 observed in smokers. A urinary catechol estrogen index, defined by [2OHE1]/[E3], was significantly elevated in smokers compared with non-smokers (1.67 +/- 0.21 vs 0.56 +/- 0.08, P less than 0.001), and this urinary index correlated strongly with radiometrically determined estrogen 2-hydroxylation (r = 0.84, P less than 0.01). Ratios of the various estrogen metabolites did not vary substantially throughout the menstrual cycle. Urinary estrogen indices as described here may therefore be useful in demonstrating differences in estrogen metabolism, specifically 2-hydroxylation vs 16 alpha-hydroxylation, in selected populations.

Steroids 1988 Jul;52(1-2):69-83

Translocation of Bax to mitochondria induces apoptotic cell death in indole-3-carbinol (I3C) treated breast cancer cells.

Epidemiological studies have suggested that the consumption of fruits and vegetables that provide several classes of compounds, including Indole-3-carbinol (I3C), may have chemopreventive activity against breast cancer. Several in vitro and in vivo animal studies also provide convincing evidence for the anti-tumor activity of I3C, however, the molecular mechanism(s) by which I3C exerts its biological effects on breast cancer cells has not been fully elucidated. In this study, we investigated the effects of I3C in Her-2/neu over-expressing MDA-MB-435 breast cancer cells and compared these results with parental cells transfected with control vector. We focused our investigation in elucidating the molecular mechanism(s) by which I3C induces apoptosis in breast cancer cells. Our data show that I3C inhibits breast cancer cell growth in a dose dependent manner in Her-2/neu over-expressing and in normal Her-2/neu expressing cells. Induction of apoptosis was also observed in these cell lines when treated with I3C, as measured by poly (ADPribose) polymerase (PARP) and caspase-3 activation. In addition, we found that I3C up-regulates Bax, down-regulates Bcl-2 and, thereby, increased the ratio of Bax to Bcl-2 favoring apoptosis. These results suggest that the alteration in the expression of these genes may play an important role in mediating the biological effects of I3C. Moreover, we also show the cellular localization of Bax by confocal microscopy, which showed diffuse distribution of Bax throughout the cytoplasmic compartment in breast cancer cells in control culture. However, in I3C treated cells, Bax showed a punctate pattern of distribution that was localized in the mitochondria. From these results, we conclude that the over-expression and translocation of Bax to mitochondria causes mitochondrial depolarization and activation of caspases, which may be one of the mechanism(s) by which I3C induces apoptotic processes in I3C treated breast cancer cells. Overall, our present data provide a novel molecular mechanism(s) by which I3C elicits its biological effects on both Her-2/neu over-expressing and with normal Her-2/neu expressing breast cancer cells, suggesting that I3C could be an effective agent in inducing apoptosis in breast cancer cells.

Oncogene 2000 Nov 23;19(50):5764-5771

Suppression of breast cancer invasion and migration by indole-3-carbinol: associated with up-regulation of BRCA1 and E-cadherin/catenin complexes.

Indole-3-carbinol (I3C) is a compound occurring naturally in cruciferous vegetables and has been indicated as a promising agent in preventing breast cancer development and progression. In the present study we have investigated the effect of I3C on the cell migration and invasion behavior in estrogen receptor positive MCF-7 and estrogen receptor negative MDA-MB-468 human breast cancer cell lines. Both MCF-7 and MDA-MB-468 were poorly invasive cell lines and exhibited modest invasion and migration capacity in the presence of fibronectin as the chemoattractant. I3C (50 or 100 microM) elicited a significant inhibition of in vitro cell adhesion, migration, and invasion as well as in vivo lung metastasis formation in both cell lines. I3C also suppressed the 17beta-estradiol stimulated migration and invasion in estrogen-responsive MCF-7 cells. These results indicate that anti-invasion and antimigration activities of I3C occur via estrogen-independent and estrogen-dependent pathways. Moreover, I3C significantly caused a dose-dependent increase in E-cadherin, three major catenins (alpha, beta and gamma-catenin) and BRCA1 expression. Our current finding is the first demonstration that I3C can activate the function of invasion suppressor molecules associated with the suppression of invasion and migration in breast cancer cells. Thus, clinical application of I3C may contribute to the potential benefit for suppression of breast cancer invasion and metastasis.

J Mol Med 2000;78(3):155-165

Indole-3-carbinol and tamoxifen cooperate to arrest the cell cycle of MCF-7 human breast cancer cells.

The current options for treating breast cancer are limited to excision surgery, general chemotherapy, radiation therapy, and, in a minority of breast cancers that rely on estrogen for their growth, antiestrogen therapy. The naturally occurring chemical indole-3-carbinol (I3C), found in vegetables of the Brassica genus, is a promising anticancer agent that we have shown previously to induce a G1 cell cycle arrest of human breast cancer cell lines, independent of estrogen receptor signaling. Combinations of I3C and the antiestrogen tamoxifen cooperate to inhibit the growth of the estrogen-dependent human MCF-7 breast cancer cell line more effectively than either agent alone. This more stringent growth arrest was demonstrated by a decrease in adherent and anchorage-independent growth, reduced DNA synthesis, and a shift into the G1 phase of the cell cycle. A combination of I3C and tamoxifen also caused a more pronounced decrease in cyclin-dependent kinase (CDK) 2-specific enzymatic activity than either compound alone but had no effect on CDK2 protein expression. Importantly, treatment with I3C and tamoxifen ablated expression of the phosphorylated retinoblastoma protein (Rb), an endogenous substrate for the G1 CDKs, whereas either agent alone only partially inhibited endogenous Rb phosphorylation. Several lines of evidence suggest that I3C works through a mechanism distinct from tamoxifen. I3C failed to compete with estrogen for estrogen receptor binding, and it specifically down-regulated the expression of CDK6. These results demonstrate that I3C and tamoxifen work through different signal transduction pathways to suppress the growth of human breast cancer cells and may, therefore, represent a potential combinatorial therapy for estrogen-responsive breast cancer.

Cancer Res 1999 Mar 15;59(6):1244-1251

Indole-3-carbinol inhibits the expression of cyclin-dependent kinase-6 and induces a G1 cell cycle arrest of human breast cancer cells independent of estrogen receptor signaling.

Indole-3-carbinol (I3C), a naturally occurring component of Brassica vegetables such as cabbage, broccoli, and Brussels sprouts, has been shown to reduce the incidence of spontaneous and carcinogen-induced mammary tumors. Treatment of cultured human MCF7 breast cancer cells with I3C reversibly suppresses the incorporation of [3H]thymidine without affecting cell viability or estrogen receptor (ER) responsiveness. Flow cytometry of propidium iodide-stained cells revealed that I3C induces a G1 cell cycle arrest. Concurrent with the I3C-induced growth inhibition, Northern blot and Western blot analyses demonstrated that I3C selectively abolished the expression of cyclin-dependent kinase 6 (CDK6) in a dose- and time-dependent manner. Furthermore, I3C inhibited the endogenous retinoblastoma protein phosphorylation and CDK6 phosphorylation of retinoblastoma in vitro to the same extent. After the MCF7 cells reached their maximal growth arrest, the levels of the p21 and p27 CDK inhibitors increased by 50%. The antiestrogen tamoxifen also suppressed MCF7 cell DNA synthesis but had no effect on CDK6 expression, while a combination of I3C and tamoxifen inhibited MCF7 cell growth more stringently than either agent alone. The I3C-mediated cell cycle arrest and repression of CDK6 production were also observed in estrogen receptor-deficient MDA-MB-231 human breast cancer cells, which demonstrates that this indole can suppress the growth of mammary tumor cells independent of estrogen receptor signaling. Thus, our observations have uncovered a previously undefined antiproliferative pathway for I3C that implicates CDK6 as a target for cell cycle control in human breast cancer cells. Moreover, our results establish for the first time that CDK6 gene expression can be inhibited in response to an extracellular antiproliferative signal.

J Biol Chem 1998 Feb 13;273(7):3838-3847

Effects of pesticides on the ratio of 16 alpha/2-hydroxyestrone: a biologic marker of breast cancer risk.

Xenobiotic estrogens are external compounds with estrogenic activity that may thereby affect the risk of breast cancer. This paper describes a mechanism by which xeno-estrogens may affect the development of breast cancer. Estradiol metabolism proceeds by hydroxylation at one of two mutually exclusive sites at C-2 and C-16 alpha. The catechol pathway yields the weakly estrogenic 2-hydroxyestrone (2-OHE1), which inhibits breast cell proliferation. In contrast, the alternative pathway yields the genotoxic 16 alpha-hydroxyestrone (16 alpha-OHE1), which enhances breast cell growth, increases unscheduled DNA synthesis, and oncogene and virus expression, and increases anchorage-independent growth. Using a radiometric assay that measures the relative formation of 16 alpha-OHE1 versus 2-OHE1 from specifically tritiated estradiol in (ER+) MCF-7 cells, we compared the ratio of 16 alpha-OHE1/2-OHE1 observed after treatment with the known rodent carcinogen 7,12-dimethylbenz[a]anthracene (DMBA) with the ratios after treatment with DDT, atrazine, gamma-benzene hexachloride, kepone, coplanar PCBs, endosulfans I and II, linoleic and eicosapentenoic acids, and indole-3-carbinol (I3C). These pesticides significantly increase the ratio of 16 alpha-OHE1/2-OHE1 metabolites to values comparable to or greater than those observed after DMBA. In contrast, the antitumor agent I3C increased 2-OHE1 formation and yielded ratios that are 1/3 of those found in unexposed control cells and 1/10th of those found in DMBA-treated cells. Thus the ratio of 16 alpha-OHE1/2-OHE1 may provide a marker for the risk of breast cancer. Assays of this ratio, which can be measured in spot urines, may prove useful for a variety of in vitro and in vivo studies bearing on breast cancer risk.

Environ Health Perspect 1995 Oct;103:147-150

Interactions of indoles with specific binding sites for 2,3,7,8-tetrachlorodibenzo-p-dioxin in rat liver.

In order to identify some of the structural requirements for binding of indoles to the receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), we have investigated the capacity of various indoles to inhibit specific [1,6-3H]TCDD binding in rat liver cytosol, as analyzed by electrofocusing in polyacrylamide gel. Of these indoles, indolo[3,2-b]carbazole was the most active. The IC50 value for receptor binding of indolo[3,2-b]carbazole as well as for 2,3,7,8-tetrachlorodibenzofuran was 3.6 nM, whereas that of 5,6-benzoflavone was 26 nM. Both indolo[3,2-b]carbazole and 2,3,7,8-tetrachlorodibenzofuran competitively inhibited the binding of [3H]TCDD to the receptor. The well-known microsomal enzyme inducer 3,3'-diindolymethane did not interact significantly with the TCDD receptor. Previous concepts of structure-activity relationships for binding of chlorinated dioxins to the TCDD receptor fail to account for the receptor binding of unhalogenated aryl hydrocarbon hydroxylase inducers such as 5,6-benzoflavone. We have instead considered the true three-dimensional space occupied by some receptor ligands by means of a computer using crystallographic data as inputs. When the atomic van der Waals radii were included, all potent receptor ligands studied could be fitted into a rectangle of 6.8 X 13.7 A.

Mol Pharmacol 1985 Oct;28(4):357-363


Continued on Page 3 of 4



Back to the Magazine Forum