Life Extension Spring Clearance Sale

Abstracts

LE Magazine November 2005
image

Pregnenolone

Neurosteroids: biosynthesis, metabolism and function of pregnenolone and dehydroepiandrosterone in the brain.

Pregnenolone (P) and dehydroepiandrosterone (D) accumulate in the brain as unconjugated steroids and their sulfate (S) and fatty acid (L) esters. The microsomal acyl-transferase activity is highest in immature (1-3 weeks old) male rats. The immunocytochemical and biochemical evidence for P biosynthesis by differentiated oligodendrocytes is reviewed. The importance of P synthesis for its brain accumulation is assessed by the intracysternal injection of the inhibitor aminoglutethimide. Primary glial cell cultures convert P to 20-OH-P, PL, progesterone, 5 alpha-pregnane-3,20-dione and 3 alpha-hydroxy-5 alpha-pregnane-20-one (Polone). Astroglial cell cultures also produce these metabolites, whereas neurons from 17-day mouse embryos only form 20-OH-P. P and D are converted to the corresponding 7 alpha-hydroxylated metabolites by a very active P-450 enzyme from rat brain microsomes. Several functions of neurosteroids are documented. P decreases in olfactory bulb of intact male rats exposed to the scent of estrous females. D inhibits the aggressive behavior of castrated male mice towards lactating female intruders. The D analog 3 beta-methyl-androst-5-en-17-one, which cannot be metabolized into sex steroids and is not demonstrably androgenic or estrogenic is at least as efficient as D. Both compounds elicit a marked decrease of PS in rat brain. The Cl- conductance of gamma-aminobutyric (GABAA) receptor is stimulated by GABA agonists, an effect which is enhanced by Polone and antagonized by PS. Thus, P metabolites in brain as well as steroids of extraencephalic sources may be involved physiologically in GABAA receptor function. The neurosteroids accumulated in brain may be precursors of sex steroid hormones and progesterone receptors have been localized in glial cells. P and D do not bind to any known intracellular receptor. A heat stable P binding protein has been found in brain cytosol with distinct ligand specificity. A binding component specific for steroids sulfates, including Polone S, DS and PS, in the order of decreasing affinity is localized in adult rat brain synaptosomal membranes. Its relationship to the GABAA receptor is under current investigation.

J Steroid Biochem Mol Biol . 1991;40(1-3):71-81

Sex- and age-related changes in epitestosterone in relation to pregnenolone sulfate and testosterone in normal subjects.

Epitestosterone has been demonstrated to act at various levels as a weak antiandrogen. So far, its serum levels have been followed up only in males. Epitestosterone and its major circulating precursor pregnenolone sulfate and T were measured in serum from 211 healthy women and 386 men to find out whether serum concentrations of epitestosterone are sufficient to exert its antiandrogenic actions. In women, epitestosterone exhibited a maximum around 20 yr of age, followed by a continuous decline up to menopause and by a further increase in the postmenopause. In men, maximum epitestosterone levels were detected at around 35 yr of age, followed by a continuous decrease. Pregnenolone sulfate levels in women reached their maximum at about age 32 yr and then declined continuously, and in males the maximum was reached about 5 yr earlier and then remained nearly constant. Epitestosterone correlated with pregnenolone sulfate only in males. In both sexes a sharp decrease of the epitestosterone/T ratio around puberty occurred. In conclusion, concentrations of epitestosterone and pregnenolone sulfate are age dependent and, at least in prepubertal boys and girls, epitestosterone reaches or even exceeds the concentrations of T, thus supporting its role as an endogenous antiandrogen. The dissimilarities in the course of epitestosterone levels through the lifespan of men and women and its relation to pregnenolone sulfate concentrations raise the question of the contribution of the adrenals and gonads to the production of both steroids and even to the uniformity of the mechanism of epitestosterone formation.

J Clin Endocrinol Metab . 2002 May;87(5):2225-31

Antioxidant activity of dioscorea and dehydroepiandrosterone (DHEA) in older humans.

Dioscorea is a yam steroid extract used in commercial steroid synthesis and consumed by people. DHEA is a steroid which declines with age, but without known activity. This study was designed to determine whether dioscorea supplementation could increase serum dehydroepiandrosterone sulfate (DHEAS) in humans and modulate lipid levels in older people. The subjects were selected volunteers aged 65-82 years. The serum DHEAS level, lipid peroxidation and lipid profile were assessed. Three weeks of dioscorea supplementation had no affect on serum DHEAS level. However DHEA intake of 85 mg/day increased serum DHEA levels 100.3%. DHEA and dioscorea significantly reduced serum lipid peroxidation, lowered serum triglycerides, phospholipid and increased HDL levels. Both DHEA and the steroid yam extract, dioscorea, have significant activities as antioxidant to modify serum lipid levels.

Life Sci . 1996;59(11):PL147-57

The neurosteroid pregnenolone sulfate infused into the medial septum nucleus increases hippocampal acetylcholine and spatial memory in rats.

The effects of an infusion of the neurosteroid pregnenolone sulfate into the medial septum on acetylcholine release in the hippocampus and on spatial memory were evaluated in two experiments. Results show that pregnenolone sulfate enhanced acetylcholine release by more than 50% of baseline and improved recognition memory of a familiar environment. Therefore, our results suggest that the septo-hippocampal pathway could be involved in the promnesic properties of this neurosteroid.

Brain Res. 2002 Oct 4;951(2):237-42

Molecular mechanism of pregnenolone sulfate action at NR1/NR2B receptors.

NMDA receptors are highly expressed in the CNS and are involved in excitatory synaptic transmission and synaptic plasticity as well as excitotoxicity. They have several binding sites for allosteric modulators, including neurosteroids, endogenous compounds synthesized by the nervous tissue and expected to act locally. Whole-cell patch-clamp recording from human embryonic kidney 293 cells expressing NR1-1a/NR2B receptors revealed that neurosteroid pregnenolone sulfate (PS) (300 microm), when applied to resting NMDA receptors, potentiates the amplitude of subsequent responses to 1 mm glutamate fivefold and slows their deactivation twofold. The same concentration of PS, when applied during NMDA receptor activation by 1 mm glutamate, has only a small effect. The association and dissociation rate constants of PS binding and unbinding from resting NMDA receptors are estimated to be 3.3 +/- 2.0 mm(-1)sec(-1) and 0.12 +/- 0.02 sec(-1), respectively, corresponding to an apparent affinity K(d) of 37 microm. The results of experiments indicate that the molecular mechanism of PS potentiation of NMDA receptor responses is attributable to an increase in the peak channel open probability (P(o)). Responses to glutamate recorded in the continuous presence of PS exhibit marked time-dependent decline. Our results indicate that the decline is induced by a change of the NMDA receptor affinity for PS after receptor activation. These results suggest that the PS is a modulator of NMDA receptor P(o), the effectiveness of which is lowered by glutamate binding. This modulation may have important consequences for the neuronal excitability.

J Neurosci . 2004 Nov 17;24(46):10318-25

Effect of neurosteroids on the retinal gabaergic system and electroretinographic activity in the golden hamster.

Abstract It has been established that neurosteroids can either inhibit or enhance GABA(A) receptor activity. Although GABA is the main inhibitory neurotransmitter in the mammalian retina, the effects of neurosteroids on retinal GABAergic activity have not been investigated. The aim of this work was to study the neurochemical and electroretinographic effects of neurosteroids in the golden hamster. On one hand, pregnenolone sulfate inhibited and allotetrahydrodeoxycorticosterone increased GABA-induced [(36)Cl](-) uptake in neurosynaptosomes. On the other hand, in whole retinas, pregnenolone sulfate increased, whereas allotetrahydrodeoxycorticosterone decreased high potassium-induced [(3)H]GABA release. The effect of both neurosteroids on GABA release was Ca(2+)-dependent, as in its absence release was not altered. The intravitreal injection of pregnenolone sulfate or vigabatrin (an irreversible inhibitor of GABA degradation) significantly decreased scotopic b-wave amplitude, whereas the opposite effect was evident when bicuculline or allotetrahydrodeoxycorticosterone were injected. A protein with a molecular weight close to that of hamster adrenal cytochrome P450 side-chain cleavage (P450scc) was detected in the hamster retina. P450scc-like immunoreactivity was localized in the inner nuclear and the ganglion cell layers. These results indicate that neurosteroids significantly modulate retinal GABAergic neurotransmission and electroretinographic activity. In addition, the selective localization of P450scc suggests that neurosteroid biosynthesis might occur only in some layers of the hamster retina.

J Neurochem . 2005 Jul 11

Hypercholesterolemia treatment: a new hypothesis or just an accident?

A new hypothesis concerning the association of low levels of steroid hormones and hypercholesterolemia is proposed. This study presents data that concurrent restoration to youthful levels of multiple normally found steroid hormones is able to normalize or improve serum total cholesterol (TC). We evaluated 20 patients with hypercholesterolemia who received hormonorestorative therapy (HT) with natural hormones. Hundred percent of patients responded. Mean serum TC was 263.5 mg/dL before and 187.9 mg/dL after treatment. Serum TC dropped below 200 mg/dL in 60.0%. No morbidity or mortality related to HT was observed. In patients characterized by hypercholesterolemia and sub-youthful serum steroidal hormones, our findings support the hypothesis that hypercholesterolemia is a compensatory mechanism for life-cycle related down-regulation of steroid hormones, and that broadband steroid hormone restoration is associated with a substantial drop in serum TC in many patients.

Med Hypotheses . 2002 Dec;59(6):751-6

CSF neuroactive steroids in affective disorders: pregnenolone, progesterone, and DBI.

Recently several steroid compounds have been discovered to act as neuromodulators in diverse central nervous system (CNS) functions. We wondered if neuroactive steroids might be involved in affective illness or in the mode of action of mood-regulating medications such as carbamazepine. Levels of the neuroactive steroids pregnenolone and progesterone, as well as the neuropeptide diazepam binding inhibitor (DBI) (known to promote steroidogenesis), were analyzed from cerebrospinal fluid (CSF) obtained by lumbar puncture (LP) from 27 medication-free subjects with affective illness and 10 healthy volunteers. Mood-disordered subjects who were clinically depressed at the time of the LP had lower CSF pregnenolone (n = 9, 0.16 ng/ml) compared with euthymic volunteers (n = 10, 0.35 ng/ml; p < 0.01). In addition, pregnenolone was lower in all affectively ill subjects (n = 26, 0.21 ng/ml), regardless of mood state on the LP day, than healthy volunteers (p < 0.05). No differences were found for progesterone or DBI levels by mood state or diagnosis. Progesterone, pregnenolone, and DBI did not change significantly or consistently in affectively ill subjects after treatment with carbamazepine. CSF pregnenolone is decreased in subjects with affective illness, particularly during episodes of active depression. Further research into the role of neuroactive steroids in mood regulation is warranted.

Biol Psychiatry. 1994 May 15;35(10):775-80