Fall Skin Care Sale

Abstracts

LE Magazine December 2006
image

Alzheimer’s-Diabetes

Advanced glycation end products and RAGE: a common thread in aging, diabetes, neurodegeneration, and inflammation.

The products of nonenzymatic glycation and oxidation of proteins and lipids, the advanced glycation end products (AGEs), accumulate in a wide variety of environments. AGEs may be generated rapidly or over long times stimulated by a range of distinct triggering mechanisms, thereby accounting for their roles in multiple settings and disease states. A critical property of AGEs is their ability to activate receptor for advanced glycation end products (RAGE), a signal transduction receptor of the immunoglobulin superfamily. It is our hypothesis that due to such interaction, AGEs impart a potent impact in tissues, stimulating processes linked to inflammation and its consequences. We hypothesize that AGEs cause perturbation in a diverse group of diseases, such as diabetes, inflammation, neurodegeneration, and aging. Thus, we propose that targeting this pathway may represent a logical step in the prevention/treatment of the sequelae of these disorders.

Glycobiology. 2005 Jul;15(7):16R-28R. Epub 2005 Mar 10

Neuropathologic changes in Alzheimer’s disease: potential targets for treatment.

The cognitive symptoms of Alzheimer’s disease (AD) are believed to be caused not only by the loss of neurons in the cholinergic and glutamatergic neural systems but also by the irregular functioning of surviving neurons in these 2 systems. Aberrant cholinergic functioning in AD has been linked to deficits in the neurotransmitter acetylcholine, while AD-related abnormalities in glutamatergic signaling have been attributed to excitotoxicity caused by the persistent, low-level stimulation of glutamatergic neurons via the chronic influx of Ca(2+) ions through the N-methyl-D-aspartate (NMDA) receptor calcium channel. Glutamatergic abnormalities in AD can be corrected to some extent by the NMDA receptor antagonist memantine, an agent whose therapeutic efficacy is believed to be related to its low to moderate level of affinity for the NMDA receptor calcium channel, a characteristic that allows memantine to prevent excessive glutamatergic stimulation while still permitting normal glutamate-mediated neurotransmission to take place. Although the mechanism underlying the chronic stimulation of glutamatergic neurons in AD has yet to be elucidated, one hypothesis is that the characteristic neuropathologic features of AD — beta-amyloid deposits and neurofibrillary tangles — induce brain inflammation, which in turn impairs glutamatergic receptor function in such a way that the ability of these receptors to prevent the influx of Ca(2+) in the absence of an appropriate presynaptic signal is compromised. If this hypothesis is correct, and if it is correct that beta-amyloid deposits and neurofibrillary tangles arise long before the symptomatic onset of AD, then memantine, with its ability to alleviate glutamatergic receptor overstimulation, would be expected to provide therapeutic benefits beginning from the earliest stages of the disease.

J Clin Psychiatry. 2006;67 Suppl 3:3-7; quiz 23

Molecular mechanisms for Alzheimer’s disease: implications for neuroimaging and therapeutics.

Alzheimer’s disease is a progressive neurodegenerative disorder characterised by the gradual onset of dementia. The pathological hallmarks of the disease are beta-amyloid (Abeta) plaques, neurofibrillary tangles, synaptic loss and reactive gliosis. The current therapeutic effort is directed towards developing drugs that reduce Abeta burden or toxicity by inhibiting secretase cleavage, Abeta aggregation, Abeta toxicity, Abeta metal interactions or by promoting Abeta clearance. A number of clinical trials are currently in progress based on these different therapeutic strategies and they should indicate which, if any, of these approaches will be efficacious. Current diagnosis of Alzheimer’s disease is made by clinical, neuropsychologic and neuroimaging assessments. Routine structural neuroimaging evaluation with computed tomography and magnetic resonance imaging is based on non-specific features such as atrophy, a late feature in the progression of the disease, hence the crucial importance of developing new approaches for early and specific recognition at the prodromal stages of Alzheimer’s disease. Functional neuroimaging techniques such as functional magnetic resonance imaging, magnetic resonance spectroscopy, positron emission tomography and single photon emission computed tomography, possibly in conjunction with other related Abeta biomarkers in plasma and CSF, could prove to be valuable in the differential diagnosis of Alzheimer’s disease, as well as in assessing prognosis. With the advent of new therapeutic strategies there is increasing interest in the development of magnetic resonance imaging contrast agents and positron emission tomography and single photon emission computed tomography radioligands that will permit the assessment of Abeta burden in vivo.

J Neurochem. 2006 Jun;97(6):1700-25

Oxidative stress and neurodegeneration.

Oxidative stress is a well-studied early response in chronic neurodegenerative diseases, including Alzheimer’s disease, where neuronal loss can exceed 90% in the vulnerable neuronal population. Oxidative stress affects all classes of macromolecules (sugar, lipids, proteins, and DNA), leading inevitably to neuronal dysfunction. We observed that Nepsilon-(carboxymethyl)lysine (CML), the predominant advanced glycation end product that accumulates in vivo, along with its glycation-specific precursor hexitol-lysine, are increased in neurons from cases of Alzheimer’s disease, especially those containing intracellular neurofibrillary pathology. The increase in hexitol-lysine and CML can result from either lipid peroxidation or advanced glycation, whereas hexitol-lysine is solely a product of glycation, suggesting that two distinct oxidative processes act in concert in the neuropathology of the disease. Furthermore, using olfactory neurons as an experimental model, we observed an increase in glycation products in neurons derived from Alzheimer’s disease patients. Our findings support the idea that aldehyde-mediated modifications, in concert with oxyradical-mediated modifications, are critical early pathogenic factors in Alzheimer’s disease.

Ann N Y Acad Sci. 2005 Jun;1043:545-52

Hyperinsulinemia provokes synchronous increases in central inflammation and beta-amyloid in normal adults.

BACKGROUND: Inflammation has been implicated as a pathogenetic factor in Alzheimer disease, possibly via effects on beta-amyloid (Abeta). Hyperinsulinemia induces inflammation and is a risk factor for Alzheimer disease. Thus, insulin abnormalities may contribute to Alzheimer disease pathophysiology through effects on the inflammatory network. OBJECTIVES: To determine the effects of induced hyperinsulinemia with euglycemia on Abeta, transthyretin, and inflammatory markers and modulators in plasma and cerebrospinal fluid (CSF). DESIGN: Randomized crossover trial. SETTING: Veterans Affairs hospital clinical research unit. PARTICIPANTS: Sixteen healthy adults ranging from 55 to 81 years of age (mean age, 68.2 years). INTERVENTIONS: On separate mornings, fasting participants received randomized infusions of saline or insulin (1.0 mU.kg(-1).min(-1)) with variable dextrose levels to maintain euglycemia, achieving plasma insulin levels typical of insulin resistance. Plasma and CSF were collected after an approximately 105-minute infusion. MAIN OUTCOME MEASURES: Plasma and CSF levels of interleukin 1alpha, interleukin 1beta, interleukin 6, tumor necrosis factor alpha, F2-isoprostane (CSF only), Abeta, norepinephrine, transthyretin, and apolipoprotein E. RESULTS: Insulin increased CSF levels of F2-isoprostane and cytokines (both P<.01), as well as plasma and CSF levels of Abeta42 (both P<.05). The changes in CSF levels of Abeta42 were predicted by increased F2-isoprostane and cytokine levels (both P<.01) and reduced transthyretin levels (P = .02). Increased inflammation was modulated by insulin-induced changes in CSF levels of norepinephrine and apolipoprotein E (both P<.05). CONCLUSION: Moderate hyperinsulinemia can elevate inflammatory markers and Abeta42 in the periphery and the brain, thereby potentially increasing the risk of Alzheimer disease.

Arch Neurol. 2005 Oct;62(10):1539-44

Alpha-lipoic acid increases Na+K+ATPase activity and reduces lipofuscin accumulation in discrete brain regions of aged rats.

A convincing link between oxidative stress and neurodegenerative diseases has been found with the knowledge that it actually damages neuronal cells in culture. We analyzed the effect of DL-alpha-lipoic acid on lipofuscin and Na(+)K(+) ATPase in discrete brain regions of young and aged rats. In aged rats, the level of lipofuscin was increased, and the activity of Na(+)K(+)ATPase was decreased. Intraperitoneal administration of lipoic acid to aged rats led to a duration-dependent reduction and elevation in lipofuscin and enzyme activity, respectively, in the cortex, cerebellum, striatum, hippocampus, and hypothalamus of the brain. These results suggest that lipoic acid, a natural metabolic antioxidant, should be useful as a therapeutic tool in preventing neuronal dysfunction in aged individuals.

Ann N Y Acad Sci. 2004 Jun;1019:350-4.

Use of carnosine as a natural anti-senescence drug for human beings.

Carnosine is an endogenous free-radical scavenger. The latest research has indicated that apart from the function of protecting cells from oxidation-induced stress damage, carnosine appears to be able to extend the lifespan of cultured cells, rejuvenate senescent cells, inhibit the toxic effects of amyloid peptide (A beta), malondialdehyde, and hypochlorite to cells, inhibit glycosylation of proteins and protein-DNA and protein-protein cross-linking, and maintain cellular homeostasis. Also, carnosine seems to delay the impairment of eyesight with aging, effectively preventing and treating senile cataract and other age-related diseases. Therefore, carnosine may be applied to human being as a drug against aging.

Biochemistry (Mosc). 2000 Jul;65(7):869-71

Cinnamon improves glucose and lipids of people with type 2 diabetes.

OBJECTIVE: The objective of this study was to determine whether cinnamon improves blood glucose, triglyceride, total cholesterol, HDL cholesterol, and LDL cholesterol levels in people with type 2 diabetes. RESEARCH DESIGN AND METHODS: A total of 60 people with type 2 diabetes, 30 men and 30 women aged 52.2 +/- 6.32 years, were divided randomly into six groups. Groups 1, 2, and 3 consumed 1, 3, or 6 g of cinnamon daily, respectively, and groups 4, 5, and 6 were given placebo capsules corresponding to the number of capsules consumed for the three levels of cinnamon. The cinnamon was consumed for 40 days followed by a 20-day washout period. RESULTS: After 40 days, all three levels of cinnamon reduced the mean fasting serum glucose (18-29%), triglyceride (23-30%), LDL cholesterol (7-27%), and total cholesterol (12-26%) levels; no significant changes were noted in the placebo groups. Changes in HDL cholesterol were not significant. CONCLUSIONS: The results of this study demonstrate that intake of 1, 3, or 6 g of cinnamon per day reduces serum glucose, triglyceride, LDL cholesterol, and total cholesterol in people with type 2 diabetes and suggest that the inclusion of cinnamon in the diet of people with type 2 diabetes will reduce risk factors associated with diabetes and cardiovascular diseases.

Diabetes Care. 2003 Dec;26(12):3215-8

Elevated intakes of supplemental chromium improve glucose and insulin variables in individuals with type 2 diabetes.

Chromium is an essential nutrient involved in normal carbohydrate and lipid metabolism. The chromium requirement is postulated to increase with increased glucose intolerance and diabetes. The objective of this study was to test the hypothesis that the elevated intake of supplemental chromium is involved in the control of type 2 diabetes. Individuals being treated for type 2 diabetes (180 men and women) were divided randomly into three groups and supplemented with: 1) placebo, 2) 1.92 micromol (100 microg) Cr as chromium picolinate two times per day, or 3) 9.6 micromol (500 microg) Cr two times per day. Subjects continued to take their normal medications and were instructed not to change their normal eating and living habits. HbA1c values improved significantly after 2 months in the group receiving 19.2 pmol (1,000 microg) Cr per day and was lower in both chromium groups after 4 months (placebo, 8.5 +/- 0.2%; 3.85 micromol Cr, 7.5 +/- 0.2%; 19.2 micromol Cr, 6.6 +/- 0.1%). Fasting glucose was lower in the 19.2-micromol group after 2 and 4 months (4-month values: placebo, 8.8 +/- 0.3 mmol/l; 19.2 micromol Cr, 7.1 +/- 0.2 mmol/l). Two-hour glucose values were also significantly lower for the subjects consuming 19.2 micromol supplemental Cr after both 2 and 4 months (4-month values: placebo, 12.3 +/- 0.4 mmo/l; 19.2 micromol Cr, 10.5 +/- 0.2 mmol/l). Fasting and 2-h insulin values decreased significantly in both groups receiving supplemental chromium after 2 and 4 months. Plasma total cholesterol also decreased after 4 months in the subjects receiving 19.2 micromol/day Cr. These data demonstrate that supplemental chromium had significant beneficial effects on HbA1c, glucose, insulin, and cholesterol variables in subjects with type 2 diabetes. The beneficial effects of chromium in individuals with diabetes were observed at levels higher than the upper limit of the Estimated Safe and Adequate Daily Dietary Intake.

Diabetes. 1997 Nov;46(11):1786-91

Oral administration of RAC-alpha-lipoic acid modulates insulin sensitivity in patients with type-2 diabetes mellitus: a placebo-controlled pilot trial.

Alpha-lipoic acid (ALA), a naturally occuring compound and a radical scavenger was shown to enhance glucose transport and utilization in different experimental and animal models. Clinical studies described an increase of insulin sensitivity after acute and short-term (10 d) parenteral administration of ALA. The effects of a 4-week oral treatment with alpha-lipoic acid were evaluated in a placebo-controlled, multicenter pilot study to determine see whether oral treatment also improves insulin sensitivity. Seventy-four patients with type-2 diabetes were randomized to either placebo (n = 19); or active treatment in various doses of 600 mg once daily (n = 19), twice daily (1200 mg; n = 18), or thrice daily (1800 mg; n = 18) alpha-lipoic acid. An isoglycemic glucose-clamp was done on days 0 (pre) and 29 (post). In this explorative study, analysis was done according to the number of subjects showing an improvement of insulin sensitivity after treatment. Furthermore, the effects of active vs. placebo treatment on insulin sensitivity was compared. All four groups were comparable and had a similar degree of hyperglycemia and insulin sensitivity at baseline. When compared to placebo, significantly more subjects had an increase in insulin-stimulated glucose disposal (MCR) after ALA treatment in each group. As there was no dose effect seen in the three different alpha-lipoic acid groups, all subjects receiving ALA were combined in the “active” group and then compared to placebo. This revealed significantly different changes in MCR after treatment (+27% vs. placebo; p < .01). This placebo-controlled explorative study confirms previous observations of an increase of insulin sensitivity in type-2 diabetes after acute and chronic intravenous administration of ALA. The results suggest that oral administration of alpha-lipoic acid can improve insulin sensitivity in patients with type-2 diabetes. The encouraging findings of this pilot trial need to be substantiated by further investigations.

Free Radic Biol Med. 1999 Aug;27(3-4):309-14

Continued on Page 3 of 3