Life Extension Skin Care Sale

Life Extension Magazine

LE Magazine July 2006
image

What Is Nuclear Factor-Kappa Beta?

By Julius G. Goepp, MD
CURCUMIN: POTENT CANCER FIGHTER
Curcumin has been specifically evaluated against the following human cancer types:

Skin cancer. Curcumin has been hailed as one of the most promising agents in preventing “photocarcinogenesis,” or cancer caused by ultraviolet light.55 Researchers have found that by inhibiting NFkB, curcumin dramatically increases the rate of cell death in human melanoma cells in culture.56 The effect was both dose- and time-dependent, meaning that more curcumin exposure over a longer time increased the rate of cancer cell destruction. Virtually identical effects have been demonstrated in malignant squamous cell carcinoma of the head and neck.57

Prostate cancer. Curcumin inhibits NFkB and sensitizes human prostate cancer cells to the lethal effects of tumor necrosis factor, which speeds up cell death58 and reduces the ability of cancer cells to proliferate.59 In a 2006 study, curcumin was also shown to decrease the invasiveness of prostate cancer cells, by reducing their production of certain protein-digesting enzymes that help the cancerous cells force their way between healthy cells in order to spread. This resulted in significantly fewer metastatic nodules in the experimental animals fed curcumin than in the controls.60

Breast cancer. Primary breast cancers are treated using surgery, radiation, estrogen modulators, and chemotherapy. Curcumin functions via additional anti-cancer mechanisms. Through its effects on NFkB, curcumin enhances the programmed death of cells from human breast cancers61 and their lung metastases.51 In a 2005 study, curcumin also reduced cancer cells’ production of vascular growth factors, adhesion molecules, and other proteins required for sustaining the cells.51 This study also demonstrated that dietary administration of curcumin to laboratory animals decreased the incidence of cancer metastasis to the lung. These results have staggering implications for human use of curcumin as an adjunctive breast cancer treatment.

Cervical cancer. One of the best-known examples of virally induced human cancer is cervical cancer, which is often caused by infection with human papillomavirus. In 2006, curcumin was shown to inhibit the expression of viral cancer genes (initiation), while also down-regulating inflammatory mediators that cervical cells produce under the influence of NFkB during cancer promotion.62

Colon cancer. Although colon cancer is a major cause of death in Western countries, many scientists believe that dietary modification could reduce its impact by as much as 90%.63 Animals with colorectal cancer showed a reduction in their tumor burden when fed curcumin.64 Human colon cancer cells in culture are inhibited by curcumin,65 and their death is markedly enhanced by curcumin.66 Both effects appear to be mediated by NFkB inhibition and related effects on tumor survival genes. Curcumin was also recently found to markedly enhance the anti-tumor effectiveness of the COX-2 inhibitor drug celecoxib.67

Lung cancer. Curcumin down-regulates NFkB activation caused by cigarette smoke in human lung cells68 and reduces the expression of genes required for tumor promotion and progression of human non-small cell lung cancers.69 Curcumin also induces cell death in multiple human lung cancer cell lines.70

Blood malignancies. Leukemia and multiple myeloma, two cancers of the immune system cells in the blood, are known to be highly dependent on NFkB activity,71 which makes them natural targets for curcumin treatment. Multiple myeloma cells treated with curcumin showed down-regulation of several gene products required for proliferation, and demonstrated arrested growth and increased cell death.71 In one type of human leukemia cell, curcumin inhibited expression of a variety of NFkB-dependent genes needed for both tumor initiation and progression.72 In adult T-cell leukemia, curcumin prevented the growth of virus-infected cells, but not of normal blood immune system cells.73 Curcumin also stopped cell replication and induced cell death by inhibiting NFkB. These results are promising as a means of suppressing this currently incurable form of leukemia.

Human studies are rapidly catching up with these exciting laboratory findings about curcumin. Phase I (safety and tolerability) trials among patients with high-risk cancers or pre-cancerous conditions have demonstrated that curcumin is absorbed after oral dosing and that humans can tolerate up to 8000 mg per day for up to four months without toxicity.74,75 The scientists who authored these studies have recommended further phase II studies of curcumin for the prevention or treatment of various cancers.

Licorice root extracts are among the oldest remedies in Chinese medicine, and have long been used for their anti-inflammatory, anti-viral, anti-ulcer, and cancer-preventive properties.76,77 More recently, scientists discovered that a major component of licorice inhibited NFkB and protected rat liver cells from alcohol toxicity.78 Another licorice extract inhibited NFkB activation and decreased production of a pro-inflammatory cytokine in human colon cells that had been exposed to an inflammatory challenge.79 These results elegantly demonstrate how NFkB inhibition can interrupt the inflammatory cycle by which cytokines stimulate the production of still more cytokines. Glabridin, another licorice root extract, produces similar anti-inflammatory effects by inhibiting NFkB.80

Capsaicin, the main ingredient in red pepper, has both anti-inflammatory and anti-cancer effects.81-83 Red pepper compounds have long been used to manage inflammatory joint conditions.37 Capsaicin inhibits the induction of two inflammation-provoking enzymes in stimulated macrophage immune cells.82 This effect is attributable to its inhibition of NFkB activation.83 Capsaicin also induces cell death in many cancers by modulating NFkB.81 Like curcumin, capsaicin inhibits the growth of adult T-cell leukemia cells by impairing NFkB activation.84 Capsaicin further impairs cancer progression by reducing levels of vascular endothelial growth factor, thus depriving growing cancers of nutrients.85

Clove extract (eugenol) inhibits NFkB-mediated expression of inflammatory cytokines.86,87 Like capsaicin, eugenol inhibits NFkB activation in stimulated macro-phage immune cells,87 reducing their synthesis of COX-2 and inflammatory cytokines.86 Oil of cloves has been used in dental care for centuries, and eugenol is now widely used to promote healing and prevent excessive inflammation after root canal surgery.88,89

Ginger extracts exert anti-inflammatory activity and stimulate cancer cell death by inhibiting NFkB.90-92 Ginger reduces expression of the key inflammatory enzymes COX-1 and COX-2.93 Topical application of ginger extract inhibits skin inflammation in a mouse model92 by inhibiting NFkB.91 A ginger extract was shown to enhance tumor cell death and down-regulate production of tumor invasion factors by preventing activation of NFkB.90

Basil and rosemary extracts, which contain ursolic acid, reduce cancer cell proliferation and tumor progression through NFkB inhibition.94-96 By inactivating NFkB, ursolic acid prevents initiated cells from reproducing and also triggers tumor cell death.95 This compound further down-regulates molecules that are required for tumor invasion and metastasis.96 Ursolic acid works through its effects on NFkB to induce resting macrophage immune cells, and thus to participate in tumor cell destruction in the early stages of cancer.97 Ursolic acid derivatives that inhibit NFkB have been shown to suppress pro-inflammatory enzyme expression in mouse models of inflammation.98 This effect has been associated with reduced cardiac fibrosis (scar tissue) in the heart tissue of diabetic mice.94

Garlic has now been shown to exert its anti-inflammatory and immunomodulatory effects by inhibiting NFkB.37,99 Garlic extracts lowered NFkB activity by up to 41% in human blood and kidney cells that had been exposed to an inflammation-provoking challenge, thus reducing the expression of certain cytokines.100 These effects may be linked to the observation that a garlic compound inhibits damage to endothelial cells lining blood vessels and reduces atherosclerotic changes.101 Garlic’s inhibition of NFkB leads to reduced production of chemicals that cause lipid peroxidation, and this could provide further protection from atherosclerosis.102 NFkB inhibition is credited for garlic’s ability to protect liver cells from auto-immune damage in an animal model,103 as well as induce cell death in leukemia.104

Pomegranate fruit extract protects cells against the effects of ultraviolet B radiation by inhibiting ultraviolet light-stimulated NFkB activation.105 Pomegranate fruit extract also prevented chemically induced skin cancers in mice through NFkB-mediated effects on both cancer initiation and promotion.106 Blockade of NFkB by pomegranate fruit extract has shown promise in osteoarthritis by inhibiting the production of protein-digesting enzymes and inflammatory cytokines.107 Pomegranate wine reduced the activation of NFkB in vascular endothelial cells by inflammatory mediators or biomechanical stresses,108 thus protecting against atherosclerosis.109

Summary

Scientists have discovered that by controlling our DNA, nuclear factor-kappa beta (NFkB) plays a central role in determining our health and longevity. By integrating signals of inflammation, NFkB appears to be the common link between such diverse conditions as heart disease, cancer, and arthritis.

Agents that control NFkB’s influence within the human body—such as omega-3 fatty acids, phytoestrogens, curcumin, garlic, licorice, ginger, rosemary, and pomegranate—hold great promise in fighting many diverse diseases and in promoting long and healthy lives.

Julius G. Goepp, MD, is a pediatrician with additional certification in pediatric emergency medicine. He received his MD from the University of Maryland and is currently Senior Consultant at Lupine Creative Consulting, Inc., in Rochester, NY.

NFkB-Mediated Diseases:

The activation of NFkB has been linked with a wide variety of diseases in humans. Below is a partial list of disorders that scientists have linked with NFkB:

  • Aging
  • Headaches
  • Pain
  • Cardiac hypertrophy
  • Type I diabetes
  • Type II diabetes
  • Elevated cholesterol
  • Atherosclerosis
  • Heart disease
  • Chronic heart failure
  • Angina pectoris
  • Cancer
  • Alzheimer’s disease
  • Pulmonary disease
  • Kidney disease
  • Gut diseases
  • Skin diseases
  • Sleep apnea
  • Asthma
  • Arthritis
  • Crohn’s disease
  • Ocular allergy
  • Appendicitis
  • Pancreatitis
  • Periodontitis
  • Sepsis.

Source: Ahn KS, Aggarwal BB. Transcription Factor NF-{kappa}B: A Sensor for Smoke and Stress Signals. Ann N Y Acad Sci. 2005 Nov;1056:218-33.

References

1. Ahn KS, Aggarwal BB. Transcription Factor NF-{kappa}B: A Sensor for Smoke and Stress Signals. Ann N Y Acad Sci. 2005 Nov;1056:218-33.

2. Orozco G, Sanchez E, Collado MD, et al. Analysis of the functional NFKB1 promoter polymorphism in rheumatoid arthritis and systemic lupus erythematosus. Tissue Antigens. 2005 Feb;65(2):183-6.

3. Sato Y, Kato J, Takimoto R, et al. Hepatitis C virus core protein promotes proliferation of human hepatoma cells through enhancement of transforming growth factor-{alpha} expression via activation of NF-{kappa}B. Gut. 2006 Mar 31;[Epub ahead of print].

4. Di Sabatino A, Morera R, Ciccocioppo R, et al. Oral butyrate for mildly to moderately active Crohn’s disease. Alimen Pharmacol Ther. 2005 Nov 1;22(9):789-94.

5. Kawano S, Kubota T, Monden Y, et al. Blockade of NF-{kappa}B improves cardiac function and survival after myocardial infarction. Am J Physiol Heart Circ Physiol. 2006 Apr 21;[Epub ahead of print].

6. Uzzo RG, Crispen PL, Golovine K, Makhov P, Horwitz EM, Kolenko VM. Diverse effects of zinc on NF-{kappa}B and AP-1 transcription factors: implications for prostate cancer progression. Carcinogenesis. 2006 Apr 10;[Epub ahead of print].

7. Sriwijitikamol A, Christ-Roberts C, Berria R, et al. Reduced skeletal muscle inhibitor of kappaB content is associated with insulin resistance in subjects with type 2 diabetes: reversal by exercise training. Diabetes. 2006 Mar;55(3):760-7.

8. Karin M, Greten FR. NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol. 2005 Oct;5(10):749-59.

9. Steinbach G, Lynch PM, Phillips RK, et al. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med. 2000 Jun 29;342(26):1946-52.

10. Bresalier RS, Sandler RS, Quan H, et al. Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. N Engl J Med. 2005 Mar 17;352(11):1092-102.

11. Solomon SD, McMurray JJ, Pfeffer MA, et al. Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N Engl J Med. 2005 Mar 17;352(11):1071-80.

12. Karin M, Yamamoto Y, Wang QM. The IKK NF-kappa B system: a treasure trove for drug development. Nat Rev Drug Discov. 2004 Jan;3(1):17-26.

13. Li Q, Verma IM. NF-kappaB regulation in the immune system. Nat Rev Immunol. 2002 Oct;2(10):725-34.

14. Karin M, Cao Y, Greten FR, Li ZW. NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer. 2002 Apr;2(4):301-10.

15. Maeda S, Kamata H, Luo JL, Leffert H, Karin M. IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell. 2005 Jul 1;121(7):977-90.

16. Kamata H, Honda S, Maeda S, et al. Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell. 2005 Mar 11;120(5):649-61.

17. Vakkila J, Lotze MT. Inflammation and necrosis promote tumour growth. Nat Rev Immunol. 2004 Aug;4(8):641-8.

18. Becker C, Fantini MC, Schramm C, et al. TGF-beta suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling. Immunity. 2004 Oct;21(4):491-501.

19. Greten FR, Eckmann L, Greten TF, et al. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell. 2004 Aug 6;118(3):285-96.

20. Grimble RF. Effect of antioxidative vitamins on immune function with clinical applications. Int J Vitam Nutr Res. 1997;67(5):312-20.

21. Lee JY, Je JH, Jung KJ, Yu BP, Chung HY. Induction of endothelial iNOS by 4-hydroxyhexenal through NF-kappaB activation. Free Radic Biol Med. 2004 Aug 15;37(4):539-48.

22. Majano PL, Garcia-Monzon C, Garcia-Trevijano ER, et al. S-Adenosylmethionine modulates inducible nitric oxide synthase gene expression in rat liver and isolated hepatocytes. J Hepatol. 2001 Dec;35(6):692-9.

23. Lee HA, Hughes DA. Alpha-lipoic acid modulates NF-kappaB activity in human monocytic cells by direct interaction with DNA. Exp Gerontol. 2002 Jan;37(2-3):401-10.

24. Prasad AS, Bao B, Beck FW, Kucuk O, Sarkar FH. Antioxidant effect of zinc in humans. Free Radic Biol Med. 2004 Oct 15;37(8):1182-90.

25. Zhao G, Etherton TD, Martin KR, et al. Anti-inflammatory effects of polyunsaturated fatty acids in THP-1 cells. Biochem Biophys Res Commun. 2005 Oct 28;336(3):909-17.

26. Jia Y, Turek JJ. Altered NF-kappaB gene expression and collagen formation induced by polyunsaturated fatty acids. J Nutr Biochem. 2005 Aug;16(8):500-6.

27. Li H, Ruan XZ, Powis SH, et al. EPA and DHA reduce LPS-induced inflammation responses in HK-2 cells: evidence for a PPAR-gamma-dependent mechanism. Kidney Int. 2005 Mar;67(3):867-74.

28. SanGiovanni JP, Chew EY. The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Prog Retin Eye Res. 2005 Jan;24(1):87-138.

29. Dijsselbloem N, Vanden BW, De NA, Haegeman G. Soy isoflavone phyto-pharmaceuticals in interleukin-6 affections. Multi-purpose nutraceuticals at the crossroad of hormone replacement, anti-cancer and anti-inflammatory therapy. Biochem Pharmacol. 2004 Sep 15;68(6):1171-85.

30. Kang JS, Yoon YD, Han MH, et al. Estrogen receptor-independent inhibition of tumor necrosis factor-alpha gene expression by phytoestrogen equol is mediated by blocking nuclear factor-kappaB activation in mouse macrophages. Biochem Pharmacol. 2005 Dec 19;71(1-2):136-43.

31. Li Y, Ahmed F, Ali S, et al. Inactivation of nuclear factor kappaB by soy isoflavone genistein contributes to increased apoptosis induced by chemotherapeutic agents in human cancer cells. Cancer Res. 2005 Aug 1;65(15):6934-42.

32. Valachovicova T, Slivova V, Bergman H, Shuherk J, Sliva D. Soy isoflavones suppress invasiveness of breast cancer cells by the inhibition of NF-kappaB/AP-1-dependent and -independent pathways. Int J Oncol. 2004 Nov;25(5):1389-95.

33. Jimi E, Ghosh S. Role of nuclear factor-kappaB in the immune system and bone. Immunol Rev. 2005 Dec;208:80-7.

34. Vina J, Borras C, Gambini J, Sastre J, Pallardo FV. Why females live longer than males? Importance of the upregulation of longevity-associated genes by oestrogenic compounds. FEBS Lett. 2005 May 9;579(12):2541-5.

35. Baum L, Ng A. Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer’s disease animal models. J Alzheimers Dis. 2004 Aug;6(4):367-77.

36. Holt PR, Katz S, Kirshoff R. Curcumin therapy in inflammatory bowel disease: a pilot study. Dig Dis Sci. 2005 Nov;50(11):2191-3.

37. Aggarwal BB, Shishodia S. Suppression of the nuclear factor-kappaB activation pathway by spice-derived phytochemicals: reasoning for seasoning. Ann NY Acad Sci. 2004 Dec;1030:434-41.

38. Jian YT, Mai GF, Wang JD, et al. Preventive and therapeutic effects of NF-kappaB inhibitor curcumin in rats colitis induced by trinitrobenzene sulfonic acid. World J Gastroenterol. 2005 Mar 28;11(12):1747-52.

39. Salh B, Assi K, Templeman V, et al. Curcumin attenuates DNB-induced murine colitis. Am J Physiol Gastrointest Liver Physiol. 2003 Jul;285(1):G235-43.

40. Nanji AA, Jokelainen K, Tipoe GL, et al. Curcumin prevents alcohol-induced liver disease in rats by inhibiting the expression of NF-kappa B-dependent genes. Am J Physiol Gastrointest Liver Physiol. 2003 Feb;284(2):G321-7.

41. Leclercq IA, Farrell GC, Sempoux C, dela PA, Horsmans Y. Curcumin inhibits NF-kappaB activation and reduces the severity of experimental steatohepatitis in mice. J Hepatol. 2004 Dec;41(6):926-34.

42. Cole GM, Morihara T, Lim GP, et al. NSAID and Antioxidant Prevention of Alzheimer’s Disease: Lessons from In Vitro and Animal Models. Ann NY Acad Sci. 2004 Dec;1035:68-84.

43. Kang G, Kong PJ, Yuh YJ, et al. Curcumin suppresses lipopolysaccharide-induced cyclooxygenase-2 expression by inhibiting activator protein 1 and nuclear factor kappab bindings in BV2 microglial cells. J Pharmacol Sci. 2004 Mar;94(3):325-8.

44. Witek-Zawada B, Koj A. Regulation of expression of stromyelysin-1 by proinflammatory cytokines in mouse brain astrocytes. J Physiol Pharmacol. 2003 Dec;54(4):489-96.

45. Yang F, Lim GP, Begum AN, et al. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem. 2005 Feb 18;280(7):5892-901.

46. Giri RK, Rajagopal V, Kalra VK. Curcumin, the active constituent of turmeric, inhibits amyloid peptide-induced cytochemokine gene expression and CCR5-mediated chemotaxis of THP-1 monocytes by modulating early growth response-1 transcription factor. J Neurochem. 2004 Dec;91(5):1199-210.

47. Shakibaei M, Schulze-Tanzil G, John T, Mobasheri A. Curcumin protects human chondrocytes from IL-l1beta-induced inhibition of collagen type II and beta1-integrin expression and activation of caspase-3: an immunomorphological study. Ann Anat. 2005 Nov;187(5-6):487-97.

48. Banerjee M, Tripathi LM, Srivastava VM, Puri A, Shukla R. Modulation of inflammatory mediators by ibuprofen and curcumin treatment during chronic inflammation in rat. Immunopharmacol Immunotoxicol. 2003 May;25(2):213-24.

49. Lev-Ari S, Strier L, Kazanov D, et al. Curcumin synergistically potentiates the growth-inhibitory and pro-apoptotic effects of celecoxib in osteoarthritis synovial adherent cells. Rheumatology (Oxford). 2006 Feb;45(2):171-7.

50. Duvoix A, Blasius R, Delhalle S, et al. Chemopreventive and therapeutic effects of curcumin. Cancer Lett. 2005 Jun 8;223(2):181-90.

51. Aggarwal BB, Shishodia S, Takada Y, et al. Curcumin suppresses the paclitaxel-induced nuclear factor-kappaB pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice. Clin Cancer Res. 2005 Oct 15;11(20):7490-8.

52. Thomas RK, Sos ML, Zander T, et al. Inhibition of nuclear translocation of nuclear factor-kappaB despite lack of functional IkappaBalpha protein overcomes multiple defects in apoptosis signaling in human B-cell malignancies. Clin Cancer Res. 2005 Nov 15;11(22):8186-94.

53. Aggarwal S, Ichikawa H, Takada Y, et al. Curcumin (diferuloylmethane) down-regulates expression of cell proliferation and antiapoptotic and metastatic gene products through suppression of IkappaBalpha kinase and Akt activation. Mol Pharmacol. 2006 Jan;69(1):195-206.

54. Kim K, Ryu K, Ko Y, Park C. Effects of nuclear factor-kappaB inhibitors and its implication on natural killer T-cell lymphoma cells. Br J Haematol. 2005 Oct;131(1):59-66.

55. Baliga MS, Katiyar SK. Chemoprevention of photocarcinogenesis by selected dietary botanicals. Photochem Photobiol Sci. 2006 Feb;5(2):243-53.

56. Bush JA, Cheung KJ, Jr., Li G. Curcumin induces apoptosis in human melanoma cells through a Fas receptor/caspase-8 pathway independent of p53. Exp Cell Res. 2001 Dec 10;271(2):305-14.

57. LoTempio MM, Veena MS, Steele HL, et al. Curcumin suppresses growth of head and neck squamous cell carcinoma. Clin Cancer Res. 2005 Oct 1;11(19 Pt 1):6994-7002.

58. Deeb D, Jiang H, Gao X, et al. Curcumin sensitizes prostate cancer cells to tumor necrosis factor-related apoptosis-inducing ligand/Apo2L by inhibiting nuclear factor-kappaB through suppression of IkappaBalpha phosphorylation. Mol Cancer Ther. 2004 Jul;3(7):803-12.

59. Kumar AP, Garcia GE, Ghosh R, et al. 4-Hydroxy-3-methoxybenzoic acid methyl ester: a curcumin derivative targets Akt/NF kappa B cell survival signaling pathway: potential for prostate cancer management. Neoplasia. 2003 May;5(3):255-66.

60. Hong JH, Ahn KS, Bae E, Jeon SS, Choi HY. The effects of curcumin on the invasiveness of prostate cancer in vitro and in vivo. Prostate Cancer Prostatic Dis. 2006 Jan 3.

61. Ramachandran C, Rodriguez S, Ramachandran R, et al. Expression profiles of apoptotic genes induced by curcumin in human breast cancer and mammary epithelial cell lines. Anticancer Res. 2005 Sep;25(5):3293-302.

62. Divya CS, Pillai MR. Antitumor action of curcumin in human papillomavirus associated cells involves downregulation of viral oncogenes, prevention of NFkB and AP-1 translocation, and modulation of apoptosis. Mol Carcinog. 2006 May;45(5):320-32.

63. Plummer SM, Holloway KA, Manson MM, et al. Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-kappaB activation via the NIK/IKK signalling complex. Oncogene. 1999 Oct 28;18(44):6013-20.

64. Garcea G, Berry DP, Jones DJ, et al. Consumption of the putative chemopreventive agent curcumin by cancer patients: assessment of curcumin levels in the colorectum and their pharmacodynamic consequences. Cancer Epidemiol Biomarkers Prev. 2005 Jan;14(1):120-5.

65. Chen A, Xu J, Johnson AC. Curcumin inhibits human colon cancer cell growth by suppressing gene expression of epidermal growth factor receptor through reducing the activity of the transcription factor Egr-1. Oncogene. 2006 Jan 12;25(2):278-87.

66. Jung EM, Lim JH, Lee TJ, et al. Curcumin sensitizes tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis through reactive oxygen species-mediated upregulation of death receptor 5 (DR5). Carcinogenesis. 2005 Nov;26(11):1905-13.

67. Lev-Ari S, Strier L, Kazanov D, et al. Celecoxib and curcumin synergistically inhibit the growth of colorectal cancer cells. Clin Cancer Res. 2005 Sep 15;11(18):6738-44.

68. Shishodia S, Potdar P, Gairola CG, Aggarwal BB. Curcumin (diferuloylmethane) down-regulates cigarette smoke-induced NF-kappaB activation through inhibition of IkappaBalpha kinase in human lung epithelial cells: correlation with suppression of COX-2, MMP-9 and cyclin D1. Carcinogenesis. 2003 Jul;24(7):1269-79.

69. Lee J, Im YH, Jung HH, et al. Curcumin inhibits interferon-alpha induced NF-kappaB and COX-2 in human A549 non-small cell lung cancer cells. Biochem Biophys Res Commun. 2005 Aug 26;334(2):313-8.

70. Radhakrishna PG, Srivastava AS, Hassanein TI, Chauhan DP, Carrier E. Induction of apoptosis in human lung cancer cells by curcumin. Cancer Lett. 2004 May 28;208(2):163-70.

71. Bharti AC, Donato N, Singh S, Aggarwal BB. Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-kappa B and IkappaBalpha kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood. 2003 Feb 1;101(3):1053-62.

72. Han SS, Keum YS, Seo HJ, Surh YJ. Curcumin suppresses activation of NF-kappaB and AP-1 induced by phorbol ester in cultured human promyelocytic leukemia cells. J Biochem Mol Biol. 2002 May 31;35(3):337-42.

73. Tomita M, Kawakami H, Uchihara JN, et al. Curcumin (diferuloylmethane) inhibits constitutive active NF-kappaB, leading to suppression of cell growth of human T-cell leukemia virus type I-infected T-cell lines and primary adult T-cell leukemia cells. Int J Cancer. 2006 Feb 1;118(3):765-72.

74. Cheng AL, Hsu CH, Lin JK, et al. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res. 2001 Jul;21(4B):2895-900.

75. Sharma RA, Euden SA, Platton SL, et al. Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin Cancer Res. 2004 Oct 15;10(20):6847-54.

76. Wang ZY, Nixon DW. Licorice and cancer. Nutr Cancer. 2001;39(1):1-11.

77. Shibata S. A drug over the millennia: pharmacognosy, chemistry, and pharmacology of licorice. Yakugaku Zasshi. 2000 Oct;120(10):849-62.

78. Wang JY, Guo JS, Li H, Liu SL, Zern MA. Inhibitory effect of glycyrrhizin on NF-kappaB binding activity in CCl4- plus ethanol-induced liver cirrhosis in rats. Liver. 1998 Jun;18(3):180-5.

79. Kang OH, Kim JA, Choi YA, et al. Inhibition of interleukin-8 production in the human colonic epithelial cell line HT-29 by 18 beta-glycyrrhetinic acid. Int J Mol Med. 2005 Jun;15(6):981-5.

80. Kang JS, Yoon YD, Cho IJ, et al. Glabridin, an isoflavan from licorice root, inhibits inducible nitric-oxide synthase expression and improves survival of mice in experimental model of septic shock. J Pharmacol Exp Ther. 2005 Mar;312(3):1187-94.

81. Lee YS, Kang YS, Lee JS, Nicolova S, Kim JA. Involvement of NADPH oxidase-mediated generation of reactive oxygen species in the apototic cell death by capsaicin in HepG2 human hepatoma cells. Free Radic Res. 2004 Apr;38(4):405-12.

82. Chen CW, Lee ST, Wu WT, et al. Signal transduction for inhibition of inducible nitric oxide synthase and cyclooxygenase-2 induction by capsaicin and related analogs in macrophages. Br J Pharmacol. 2003 Nov;140(6):1077-87.

83. Kim CS, Kawada T, Kim BS, et al. Capsaicin exhibits anti-inflammatory property by inhibiting IkB-a degradation in LPS-stimulated peritoneal macrophages. Cell Signal. 2003 Mar;15(3):299-306.

84. Zhang J, Nagasaki M, Tanaka Y, Morikawa S. Capsaicin inhibits growth of adult T-cell leukemia cells. Leuk Res. 2003 Mar;27(3):275-83.

85. Patel PS, Yang S, Li A, Varney ML, Singh RK. Capsaicin regulates vascular endothelial cell growth factor expression by modulation of hypoxia inducing factor-1alpha in human malignant melanoma cells. J Cancer Res Clin Oncol. 2002 Sep;128(9):461-8.

86. Murakami Y, Shoji M, Hirata A, et al. Dehydrodiisoeugenol, an isoeugenol dimer, inhibits lipopolysaccharide-stimulated nuclear factor kappa B activation and cyclooxygenase-2 expression in macrophages. Arch Biochem Biophys. 2005 Feb 15;434(2):326-32.

87. Murakami Y, Shoji M, Hanazawa S, Tanaka S, Fujisawa S. Preventive effect of bis-eugenol, a eugenol ortho dimer, on lipopolysaccharide-stimulated nuclear factor kappa B activation and inflammatory cytokine expression in macrophages. Biochem Pharmacol. 2003 Sep 15;66(6):1061-6.

88. Ozalp N, Saroglu I, Sonmez H. Evaluation of various root canal filling materials in primary molar pulpectomies: an in vivo study. Am J Dent. 2005 Dec;18(6):347-50.

89. Damle SG, Nadkarni UM. Calcium hydroxide and zinc oxide eugenol as root canal filling materials in primary molars: a comparative study. Aust Endod J. 2005 Dec;31(3):114-9.

90. Takada Y, Murakami A, Aggarwal BB. Zerumbone abolishes NF-kappaB and IkappaBalpha kinase activation leading to suppression of antiapoptotic and metastatic gene expression, upregulation of apoptosis, and downregulation of invasion. Oncogene. 2005 Oct 20;24(46):6957-69.

91. Kim SO, Kundu JK, Shin YK, et al. [6]-Gingerol inhibits COX-2 expression by blocking the activation of p38 MAP kinase and NF-kappaB in phorbol ester-stimulated mouse skin. Oncogene. 2005 Apr 7;24(15):2558-67.

92. Kim SO, Chun KS, Kundu JK, Surh YJ. Inhibitory effects of [6]-gingerol on PMA-induced COX-2 expression and activation of NF-kappaB and p38 MAPK in mouse skin. Biofactors. 2004;21(1-4):27-31.

93. Grzanna R, Lindmark L, Frondoza CG. Ginger—an herbal medicinal product with broad anti-inflammatory actions. J Med Food. 2005;8(2):125-32.

94. Huang TH, Yang Q, Harada M, et al. Pomegranate flower extract diminishes cardiac fibrosis in Zucker diabetic fatty rats: modulation of cardiac endothelin-1 and nuclear factor-kappaB pathways. J Cardiovasc Pharmacol. 2005 Dec;46(6):856-62.

95. Hsu YL, Kuo PL, Lin CC. Proliferative inhibition, cell-cycle dysregulation, and induction of apoptosis by ursolic acid in human non-small cell lung cancer A549 cells. Life Sci. 2004 Sep 24;75(19):2303-16.

96. Shishodia S, Majumdar S, Banerjee S, Aggarwal BB. Ursolic acid inhibits nuclear factor-kappaB activation induced by carcinogenic agents through suppression of IkappaBalpha kinase and p65 phosphorylation: correlation with down-regulation of cyclooxygenase 2, matrix metalloproteinase 9, and cyclin D1. Cancer Res. 2003 Aug 1;63(15):4375-83.

97. You HJ, Choi CY, Kim JY, et al. Ursolic acid enhances nitric oxide and tumor necrosis factor-alpha production via nuclear factor-kappaB activation in the resting macrophages. FEBS Lett. 2001 Dec 7;509(2):156-60.

98. Suh N, Honda T, Finlay HJ, et al. Novel triterpenoids suppress inducible nitric oxide synthase (iNOS) and inducible cyclooxygenase (COX-2) in mouse macrophages. Cancer Res. 1998 Feb 15;58(4):717-23.

99. Geng Z, Rong Y, Lau BH. S-allyl cysteine inhibits activation of nuclear factor kappa B in human T cells. Free Radic Biol Med. 1997;23(2):345-50.

100. Keiss HP, Dirsch VM, Hartung T, et al. Garlic (Allium sativum L.) modulates cytokine expression in lipopolysaccharide-activated human blood thereby inhibiting NF-kappaB activity. J Nutr. 2003 Jul;133(7):2171-5.

101. Ho SE, Ide N, Lau BH. S-allyl cysteine reduces oxidant load in cells involved in the atherogenic process. Phytomedicine. 2001 Jan;8(1):39-46.

102. Ide N, Lau BH. Garlic compounds minimize intracellular oxidative stress and inhibit nuclear factor-kappa b activation. J Nutr. 2001 Mar;131(3s):1020S-6S.

103. Bruck R, Aeed H, Brazovsky E, Noor T, Hershkoviz R. Allicin, the active component of garlic, prevents immune-mediated, concanavalin A-induced hepatic injury in mice. Liver Int. 2005 Jun;25(3):613-21.

104. Dirsch VM, Antlsperger DS, Hentze H, Vollmar AM. Ajoene, an experimental anti-leukemic drug: mechanism of cell death. Leukemia. 2002 Jan;16(1):74-83.

105. Afaq F, Malik A, Syed D, et al. Pomegranate fruit extract modulates UV-B-mediated phosphorylation of mitogen-activated protein kinases and activation of nuclear factor kappa B in normal human epidermal keratinocytes paragraph sign. Photochem Photobiol. 2005 Jan;81(1):38-45.

106. Afaq F, Saleem M, Krueger CG, Reed JD, Mukhtar H. Anthocyanin- and hydrolyzable tannin-rich pomegranate fruit extract modulates MAPK and NF-kappaB pathways and inhibits skin tumorigenesis in CD-1 mice. Int J Cancer. 2005 Jan 20;113(3):423-33.

107. Ahmed S, Wang N, Hafeez BB, Cheruvu VK, Haqqi TM. Punica granatum L. extract inhibits IL-1beta-induced expression of matrix metalloproteinases by inhibiting the activation of MAP kinases and NF-kappaB in human chondrocytes in vitro. J Nutr. 2005 Sep;135(9):2096-102.

108. Schubert SY, Neeman I, Resnick N. A novel mechanism for the inhibition of NF-kappaB activation in vascular endothelial cells by natural antioxidants. FASEB J. 2002 Dec;16(14):1931-3.

109. Tzima E, Irani-Tehrani M, Kiosses WB, et al. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature. 2005 Sep 15;437(7057):426-31.