Whole Body Health Sale

Abstracts

LE Magazine April 2007
image

Zeaxanthin and Lutein

Consumption of one egg per day increases serum lutein and zeaxanthin concentrations in older adults without altering serum lipid and lipoprotein cholesterol concentrations.

Lutein and zeaxanthin accumulate in the macular pigment of the retina, and are reported to be associated with a reduced incidence of age-related macular degeneration. A rich source of lutein and zeaxanthin in the American diet is the yolk of chicken eggs. Thus, the objective of the study was to investigate the effect of consuming 1 egg/d for 5 wk on the serum concentrations of lutein, zeaxanthin, lipids, and lipoprotein cholesterol in individuals >60 y of age. In a randomized cross-over design, 33 men and women participated in the 18-wk study, which included one run-in and one washout period of no eggs prior to and between two 5-wk interventions of either consuming 1 egg or egg substitute/d. Serum lutein 26% (P < 0.001) and zeaxanthin 38% (P < 0.001) concentrations increased after 5-wk of 1 egg/d compared with the phase prior to consuming eggs. Serum concentrations of total cholesterol, LDL cholesterol, HDL cholesterol, and triglycerides were not affected. These findings indicate that in older adults, 5 wk of consuming 1 egg/d significantly increases serum lutein and zeaxanthin concentrations without elevating serum lipids and lipoprotein cholesterol concentrations.

J Nutr. 2006 Oct;136(10):2519-24

Associations between intermediate age-related macular degeneration and lutein and zeaxanthin in the Carotenoids in Age-related Eye Disease Study (CAREDS): ancillary study of the Women’s Health Initiative.

OBJECTIVE: To evaluate the relationship between dietary lutein plus zeaxanthin and intermediate age-related macular degeneration (AMD). DESIGN: Women aged 50 to 79 years in Iowa, Wisconsin, and Oregon with intake of lutein plus zeaxanthin above the 78th (high) and below the 28th (low) percentiles at baseline in the Women’s Health Initiative Observational Study were recruited 4 to 7 years later into the Carotenoids in Age-Related Eye Disease Study (CAREDS), when the presence of AMD was determined by fundus photographs. Logistic regression analyses examined the prevalence of AMD in 1787 CAREDS participants, after accounting for potential covariates. RESULTS: The prevalence of intermediate AMD was not statistically different between the high and low lutein plus zeaxanthin intake recruitment groups after adjusting for age (odds ratio, 0.96; 95% confidence interval, 0.75-1.23). Limiting analyses to women younger than 75 years with stable intake of lutein plus zeaxanthin, without a history of chronic diseases that are often associated with diet changes, substantially lowered odds ratios (0.57; 95% confidence interval, 0.34-0.95). Exploratory analyses of advanced AMD in 34 participants resulted in protective, but statistically nonsignificant, associations in the overall sample and in women younger than 75 years. CONCLUSION: Diets rich in lutein plus zeaxanthin may protect against intermediate AMD in healthy women younger than 75 years.

Arch Ophthalmol. 2006 Aug;124(8):1151-62

Lutein, but not alpha-tocopherol, supplementation improves visual function in patients with age-related cataracts: a 2-y double-blind, placebo-controlled pilot study.

OBJECTIVE: We investigated the effect of long-term antioxidant supplementation (lutein and alpha-tocopherol) on serum levels and visual performance in patients with cataracts. METHODS: Seventeen patients clinically diagnosed with age-related cataracts were randomized in a double-blind study involving dietary supplementation with lutein (15 mg; n = 5), alpha-tocopherol (100 mg; n = 6), or placebo (n = 6), three times a week for up to 2 y. Serum carotenoid and tocopherol concentrations were determined with quality-controlled high-performance liquid chromatography, and visual performance (visual acuity and glare sensitivity) and biochemical and hematologic indexes were monitored every 3 mo throughout the study. Changes in these parameters were assessed by General Linear Model (GLM) repeated measures analysis. RESULTS: Serum concentrations of lutein and alpha-tocopherol increased with supplementation, although statistical significance was reached only in the lutein group. Visual performance (visual acuity and glare sensitivity) improved in the lutein group, whereas there was a trend toward the maintenance of and decrease in visual acuity with alpha-tocopherol and placebo supplementation, respectively. No significant side effects or changes in biochemical or hematologic profiles were observed in any of the subjects during the study. CONCLUSIONS: Visual function in patients with age-related cataracts who received the lutein supplements improved, suggesting that a higher intake of lutein, through lutein-rich fruit and vegetables or supplements, may have beneficial effects on the visual performance of people with age-related cataracts.

Nutrition. 2003 Jan;19(1):21-4

Are lutein and zeaxanthin conditionally essential nutrients for eye health?

The carotenoids lutein and zeaxanthin are found in the macula in high concentrations and may play a role in the pathogenesis of age-related macular degeneration (ARMD). Lutein and zeaxanthin may protect the macula and photoreceptor outer segments throughout the retina from oxidative stress and play a role in an antioxidant cascade that safely disarms the energy of reactive oxygen species. Although lutein and zeaxanthin are not essential nutrients, studies are beginning to suggest that they fit the criteria for conditionally essential nutrients. Low plasma lutein and zeaxanthin concentrations or dietary intake are associated with low macular pigment density and increased risk of ARMD. Dietary deprivation of lutein and zeaxanthin in primates causes pathological changes in the macula. Should controlled clinical trials show lutein and/or zeaxanthin supplementation protects against the development or progression of ARMD and other eye diseases, then lutein and zeaxanthin could be considered as conditionally essential nutrients for humans.

Med Hypotheses. 2003 Oct;61(4):465-72

Double-masked, placebo-controlled, randomized trial of lutein and antioxidant supplementation in the intervention of atrophic age-related macular degeneration: the Veterans LAST study (Lutein Antioxidant Supplementation Trial).

BACKGROUND: Age-related macular degeneration (ARMD) is the leading cause of vision loss in aging Westem societies. The objective of the lutein antioxidant supplementation trial (LAST) is to determine whether nutritional supplementation with lutein or lutein together with antioxidants, vitamins, and minerals, improves visual function and symptoms in atrophic ARMD. METHODS: The study was a prospective, 12-month, randomized, double-masked, placebo-controlled trial conducted at an urban midwestern Veterans Administration Hospital from August 1999 to May 2001. Ninety patients with atrophic ARMD were referred by ophthalmologists at two Chicago-area veterans medical facilities. Patients in Group 1 received lutein 10 mg (L); in Group 2, a lutein 10 mg/antioxidants/vitamins and minerals broad spectrum supplementation formula (L/A); and in Group 3, a maltodextrin placebo (P) over 12 months. RESULTS: In Groups 1 L and 2 L/A, mean eye macular pigment optical density increased approximately 0.09 log units from baseline, Snellen equivalent visual acuity improved 5.4 letters for Group 1 L and 3.5 letters for Group 2 L/A, and contrast sensitivity improved. There was a net subjective improvement in Amsler grid in Group 1 L. VFO-14 questionnaires conceming subjective glare recovery were nearly significant at 4 months for Group 2 L/A. Patients who received the placebo (Group 3) had no significant changes in any of the measured findings. CONCLUSION: In this study, visual function is improved with lutein alone or lutein together with other nutrients. Further studies are needed with more patients, of both genders, and for longer periods of time to assess long-term effects of lutein or lutein together with a broad spectrum of antioxidants, vitamins, and minerals in the treatment of atrophic age-related macular degeneration.

Optometry. 2004 Apr;75(4):216-30

Fruits and vegetables that are sources for lutein and zeaxanthin: the macular pigment in human eyes.

BACKGROUND: It has been suggested that eating green leafy vegetables, which are rich in lutein and zeaxanthin, may decrease the risk for age related macular degeneration. The goal of this study was to analyze various fruits and vegetables to establish which ones contain lutein and/or zeaxanthin and can serve as possible dietary supplements for these carotenoids. METHODS: Homogenates of 33 fruits and vegetables, two fruit juices, and egg yolk were used for extraction of the carotenoids with hexane. RESULTS: Egg yolk and maize (corn) contained the highest mole percentage (% of total) of lutein and zeaxanthin (more than 85% of the total carotenoids). Maize was the vegetable with the highest quantity of lutein (60% of total) and orange pepper was the vegetable with the highest amount of zeaxanthin (37% of total). Substantial amounts of lutein and zeaxanthin (30-50%) were also present in kiwi fruit, grapes, spinach, orange juice, zucchini (or vegetable marrow), and different kinds of squash. The results show that there are fruits and vegetables of various colours with a relatively high content of lutein and zeaxanthin. CONCLUSIONS: Most of the dark green leafy vegetables, previously recommended for a higher intake of lutein and zeaxanthin, have 15-47% of lutein, but a very low content (0-3%) of zeaxanthin. Our study shows that fruits and vegetables of various colours can be consumed to increase dietary intake of lutein and zeaxanthin.

Br J Ophthalmol. 1998 Aug;82(8):907-10

A prospective study of carotenoid and vitamin A intakes and risk of cataract extraction in US women.

BACKGROUND: Oxidation of lens proteins plays a central role in the formation of age-related cataracts, suggesting that dietary antioxidants may play a role in prevention. However, the relation between specific antioxidants and risk of cataract remains uncertain. OBJECTIVE: Our objective was to examine prospectively the association between carotenoid and vitamin A intakes and cataract extraction in women. METHODS: A prospective cohort of registered female nurses aged 45-71 y and free of diagnosed cancer was followed; in 1980, 50461 were included and others were added as they became 45 y of age for a total of 77,466. Information on nutrient intake was assessed by repeated administration of a food-frequency questionnaire during 12 y of follow-up. RESULTS: During 761,762 person-years of follow-up, 1,471 cataracts were extracted. After age, smoking, and other potential cataract risk factors were controlled for, those with the highest intake of lutein and zeaxanthin had a 22% decreased risk of cataract extraction compared with those in the lowest quintile (relative risk: 0.78; 95% CI: 0.63, 0.95; P for trend = 0.04). Other carotenoids (alpha-carotene, beta-carotene, lycopene, and beta-cryptoxanthin), vitamin A, and retinol were not associated with cataract in multivariate analysis. Increasing frequency of intakes of spinach and kale, foods rich in lutein, was associated with a moderate decrease in risk of cataract. CONCLUSIONS: Lutein and zeaxanthin and foods rich in these carotenoids may decrease the risk of cataracts severe enough to require extraction.

Am J Clin Nutr. 1999 Oct;70(4):509-16