Life Extension Final Clerance Sale

Abstracts

LE Magazine February 2007
image

Vitamin D

Epidemic influenza and vitamin D.

In 1981, R. Edgar Hope-Simpson proposed that a ‘seasonal stimulus’ intimately associated with solar radiation explained the remarkable seasonality of epidemic influenza. Solar radiation triggers robust seasonal vitamin D production in the skin; vitamin D deficiency is common in the winter, and activated vitamin D, 1,25(OH)2D, a steroid hormone, has profound effects on human immunity. 1,25(OH)2D acts as an immune system modulator, preventing excessive expression of inflammatory cytokines and increasing the ‘oxidative burst’ potential of macrophages. Perhaps most importantly, it dramatically stimulates the expression of potent anti-microbial peptides, which exist in neutrophils, monocytes, natural killer cells, and in epithelial cells lining the respiratory tract where they play a major role in protecting the lung from infection. Volunteers inoculated with live attenuated influenza virus are more likely to develop fever and serological evidence of an immune response in the winter. Vitamin D deficiency predisposes children to respiratory infections. Ultraviolet radiation (either from artificial sources or from sunlight) reduces the incidence of viral respiratory infections, as does cod liver oil (which contains vitamin D). An interventional study showed that vitamin D reduces the incidence of respiratory infections in children. We conclude that vitamin D, or lack of it, may be Hope-Simpson’s ‘seasonal stimulus’.

Epidemiol Infect. 2006 Dec;134(6):1129-40

Proinflammatory cytokine responses induced by influenza A (H5N1) viruses in primary human alveolar and bronchial epithelial cells.

BACKGROUND: Fatal human respiratory disease associated with influenza A subtype H5N1 has been documented in Hong Kong, and more recently in Vietnam, Thailand and Cambodia. We previously demonstrated that patients with H5N1 disease had unusually high serum levels of IP-10 (interferon-gamma-inducible protein-10). Furthermore, when compared with human influenza virus subtype H1N1, the H5N1 viruses in 1997 (A/Hong Kong/483/97) (H5N1/97) were more potent inducers of pro-inflammatory cytokines (e.g. tumor necrosis factor-a) and chemokines (e.g. IP-10) from primary human macrophages in vitro, which suggests that cytokines dysregulation may play a role in pathogenesis of H5N1 disease. Since respiratory epithelial cells are the primary target cell for replication of influenza viruses, it is pertinent to investigate the cytokine induction profile of H5N1 viruses in these cells. METHODS: We used quantitative RT-PCR and ELISA to compare the profile of cytokine and chemokine gene expression induced by H5N1 viruses A/HK/483/97 (H5N1/97), A/Vietnam/1194/04 and A/Vietnam/3046/04 (both H5N1/04) with that of human H1N1 virus in human primary alveolar and bronchial epithelial cells in vitro. RESULTS: We demonstrated that in comparison to human H1N1 viruses, H5N1/97 and H5N1/04 viruses were more potent inducers of IP-10, interferon beta, RANTES (regulated on activation, normal T cell expressed and secreted) and interleukin 6 (IL-6) in primary human alveolar and bronchial epithelial cells in vitro. Recent H5N1 viruses from Vietnam (H5N1/04) appeared to be even more potent at inducing IP-10 than H5N1/97 virus. CONCLUSION: The H5N1/97 and H5N1/04 subtype influenza A viruses are more potent inducers of proinflammatory cytokines and chemokines in primary human respiratory epithelial cells than subtype H1N1 virus. We suggest that this hyper-induction of cytokines may be relevant to the pathogenesis of human H5N1 disease.

Respir Res. 2005 Nov 11;6:135

Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response.

In innate immune responses, activation of Toll-like receptors (TLRs) triggers direct antimicrobial activity against intracellular bacteria, which in murine, but not human, monocytes and macrophages is mediated principally by nitric oxide. We report here that TLR activation of human macrophages up-regulated expression of the vitamin D receptor and the vitamin D-1-hydroxylase genes, leading to induction of the antimicrobial peptide cathelicidin and killing of intracellular Mycobacterium tuberculosis. We also observed that sera from African-American individuals, known to have increased susceptibility to tuberculosis, had low 25-hydroxyvitamin D and were inefficient in supporting cathelicidin messenger RNA induction. These data support a link between TLRs and vitamin D-mediated innate immunity and suggest that differences in ability of human populations to produce vitamin D may contribute to susceptibility to microbial infection.

Science. 2006 Mar 24;311(5768):1770-3

Antimicrobial peptides in the airway.

The airway provides numerous defense mechanisms to prevent microbial colonization by the large numbers of bacteria and viruses present in ambient air. An important component of this defense is the antimicrobial peptides and proteins present in the airway surface fluid (ASF), the mucin-rich fluid covering the respiratory epithelium. These include larger proteins such as lysozyme and lactoferrin, as well as the cationic defensin and cathelicidin peptides. While some of these peptides, such as human beta-defensin (hBD)-1, are present constitutively, others, including hBD2 and -3 are inducible in response to bacterial recognition by Toll-like receptor-mediated pathways. These peptides can act as microbicides in the ASF, but also exhibit other activities, including potent chemotactic activity for cells of the innate and adaptive immune systems, suggesting they play a complex role in the host defense of the airway. Inhibition of antimicrobial peptide activity or gene expression can result in increased susceptibility to infections. This has been observed with cystic fibrosis (CF), where the CF phenotype leads to reduced antimicrobial capacity of peptides in the airway. Pathogenic virulence factors can inhibit defensin gene expression, as can environmental factors such as air pollution. Such an interference can result in infections by airway-specific pathogens including Bordetella bronchiseptica, Mycobacterium tuberculosis, and influenza virus. Research into the modulation of peptide gene expression in animal models, as well as the optimization of peptide-based therapeutics shows promise for the treatment and prevention of airway infectious diseases.

Curr Top Microbiol Immunol. 2006;306:153-82

Defects in the synthesis and metabolism of vitamin D.

It is now recognized that it is casual exposure to sunlight that provides most humans with their vitamin D requirement. During exposure to sunlight, the high energy ultraviolet B photons (290-315 mm) photolyzes cutaneous stores of 7-dehydrocholesterol to previtamin D3. Once formed, previtamin D3 undergoes a thermal isomerization that results in the formation of vitamin D3. Vitamin D3 is biologically inert and requires successive hydroxylations in the liver and kidney to form its biologically active hormone 1,25-dihydroxy-vitamin D3. The major physiologic function of 1,25-dihydroxy-vitamin D3 is to maintain blood calcium in the normal range. It accomplishes this by increasing the efficiency of intestinal calcium absorption and mobilizing stem cells to become osteoclasts which, in turn, remove calcium from the bone. It is now recognized that there are a variety of calcium metabolic disorders that are related to defects in the synthesis and metabolism of vitamin D. Chronic granulomatous disorders are often associated with hypercalciuria and hypercalcemia. The mechanism by which this occurs is that activated macrophages within granulomatous tissue, in an unregulated manner, convert 25-hydroxyvitamin D to 1,25-dihydroxyvitamin D. Besides its calcemic activity 1,25-dihydroxyvitamin D3 is a potent antiproliferative factor for cells and tissues that possess its vitamin D receptor. This has clinical utility in that 1,25-dihydroxyvitamin D3 and its analogs have been successfully used for the treatment of the hyperproliferative skin disease psoriasis.

Exp Clin Endocrinol Diabetes. 1995;103(4):219-27

The role of vitamin D for bone health and fracture prevention.

Vitamin D inadequacy is pandemic in adults. Vitamin D deficiency causes osteopenia, precipitates and exacerbates osteoporosis, causes the painful bone disease osteomalacia, and increases muscle weakness, which worsens the risk of falls and fractures. Vitamin D deficiency can be prevented by sensible sun exposure and adequate supplementation. Monitoring serum 25-hydroxyvitamin D is the only way to determine vitamin D status. Recent recommendations suggest that in the absence of sun exposure, adults should ingest 1000 IU of vitamin D3 per day. The ideal healthy blood level of 25-hydroxyvitamin D should be 30 to 60 ng/mL. Vitamin D intoxication occurs when 25-hydroxyvitamin D levels are greater than 150 ng/mL. Three recent reports suggesting that vitamin D and calcium supplementation does not decrease the risk of fracture will be put into perspective in light of the vast literature supporting increasing vitamin D and calcium intake as an effective method for decreasing risk of vertebral and nonvertebral fractures.

Curr Osteoporos Rep. 2006 Sep;4(3):96-102

Calcium and vitamin D nutrition and bone disease of the elderly.

Osteoporosis, a systemic skeletal disease characterized by a low bone mass, is a major public health problem in EC member states because of the high incidence of fragility fractures, especially hip and vertebral fracture. In EC member states the high incidence of osteoporotic fractures leads to considerable mortality, morbidity, reduced mobility and decreased quality of life. In 1995 the number of hip fractures in 15 countries of EC has been 382,000 and the estimated total care cost of about 9 billion of ECUs. Given the magnitude of the problem public health measures are important for preventive intervention. Skeletal bone mass is determined by a combination of endogenous (genetic, hormonal) and exogenous (nutritional, physical activity) factors. Nutrition plays an important role in bone health. The two nutrients essential for bone health are calcium and vitamin D. Reduced supplies of calcium are associated with a reduced bone mass and osteoporosis, whereas a chronic and severe vitamin D deficiency leads to osteomalacia, a metabolic bone disease characterized by a decreased mineralization of bone. Vitamin D insufficiency, the preclinical phase of vitamin D deficiency, is most commonly found in the elderly. The major causes of vitamin D deficiency and insufficiency are decreased renal hydroxylation of vitamin D, poor nutrition, scarce exposition to sunlight and a decline in the synthesis of vitamin D in the skin. The daily average calcium intake in Europe has been evaluated in the SENECA study concerning the diet of elderly people from 19 towns of 10 European countries. In about one third of subjects the dietary calcium intake results were very low, between 300 and 600 mg/day in women, and 350 and 700 mg/day in men. Calcium supplements reduce the rate of bone loss in osteoporotic patients. Some recent studies have reported a significant positive effect of calcium treatment not only on bone mass but also on fracture incidence. The SENECA study, has also shown that vitamin D insufficiency is frequent in elderly populations in Europe. There are a number of studies on the effects of vitamin D supplementation on bone loss in the elderly, showing that supplementations with daily doses of 400-800 IU of vitamin D, given alone or in combination with calcium, are able to reverse vitamin D insufficiency, to prevent bone loss and to improve bone density in the elderly. In recent years, there has been much uncertainty about the intake of calcium for various ages and physiological states. In 1998, the expert committee of the European Community in the Report on Osteoporosis-Action on prevention, has given the recommended daily dietary allowances (RDA) for calcium at all stage of life. For the elderly population, above age 65 the RDA is 700-800 mg/day. The main source of calcium in the diet are dairy products (milk, yoghurts and cheese) fish (sardines with bones), few vegetables and fruits. The optimal way to achieve adequate calcium intake is through the diet. However, when dietary sources are scarce or not well tolerated, calcium supplementation may be used. Calcium is generally well tolerated and reports of significant side-effects are rare. Adequate sunlight exposure may prevent and cure vitamin D insufficiency. However, the sunlight exposure or the ultraviolet irradiation are limited by concern about skin cancer and skin disease. The most rational approach to reducing vitamin D insufficiency is supplementation. In Europe, the RDA is 400-800 IU (10-20 microg) daily for people aged 65 years or over. This dose is safe and free of side effects. In conclusion, in Europe a low calcium intake and a suboptimal vitamin D status are very common in the elderly. Evidence supports routine supplementation for these people at risk of osteoporosis, by providing a daily intake of 700-800 mg of calcium and 400-800 IU of vitamin D. This is an effective, safe and cheap means of preventing osteoporotic fractures.

Public Health Nutr. 2001 Apr;4(2B):547-59

Vitamin D deficiency in homebound elderly persons.

OBJECTIVE—To assess the vitamin D status in homebound, community-dwelling elderly persons; sunlight-deprived elderly nursing home residents; and healthy, ambulatory elderly persons. DESIGN—A cohort analytic study. PARTICIPANTS—Of 244 subjects at least 65 years old, 116 subjects (85 women and 31 men) had been confined indoors for at least 6 months, either in private dwellings in the community (the Hopkins Elder Housecall Program) or in a teaching nursing home (The Johns Hopkins Geriatrics Center). The 128 control subjects, a healthy ambulatory group, came from the Baltimore Longitudinal Study on Aging. All subjects were free of diseases or medications that might interfere with their vitamin D status. MAIN OUTCOME MEASURES—Serum levels of 25-hydroxyvitamin D (25-OHD) and 1,25-dihydroxyvitamin D (1,25-[OH]2D) were measured in all subjects. In a subgroup of 80 subjects, serum levels of intact parathyroid hormone (PTH), ionized calcium, and osteocalcin and intake of vitamin D (through 3-day food records) were assessed. A randomly selected cohort of sunlight-deprived subjects also had serum levels of vitamin D binding protein measured. RESULTS—In sunlight-deprived subjects overall, the mean 25-OHD level was 30 nmol/L (12 ng/mL) (range, < 10 to 77 nmol/L [< 4 to 31 ng/mL]) and the mean 1,25-(OH)2D level was 52 pmol/L (20 pg/mL) (range, 18 to 122 pmol/L [7 to 47 pg/mL]). In the sunlight-deprived subjects, 54% of community dwellers and 38% of nursing home residents had serum levels of 25-OHD below 25 nmol/L (10 ng/mL) (normal range, 25 to 137 nmol/L [10 to 55 ng/mL]). A significant inverse relationship existed between 25-OHD (ie, Log [25-OHD]) and PTH when they were analyzed together (r = -0.42; R2 = 0.18; P < .001) and for each cohort separately. All other parameters measured, except ionized calcium, differed significantly from the Baltimore Longitudinal Study Group means. The mean (SD) daily intakes of vitamin D (121 [132] IU) and calcium (583 [322] mg) were below the recommended dietary allowance only in the community-dwelling homebound population. The mean vitamin D binding protein level in the sunlight-deprived subgroup was in the normal range. CONCLUSIONS—Despite a relatively high degree of vitamin supplementation in the United States, homebound elderly persons are likely to suffer from vitamin D deficiency.

JAMA. 1995 Dec 6;274(21):1683-6

Continued on Page 2 of 4