Life Extension Blood Test Super Sale

Abstracts

LE Magazine July 2007
image

Blueberry

Lipophilic and hydrophilic antioxidant capacities of common foods in the United States.

Both lipophilic and hydrophilic antioxidant capacities were determined using the oxygen radical absorbance capacity (ORAC(FL)) assay with fluorescein as the fluorescent probe and 2,2’-azobis(2-amidinopropane) dihydrochloride as a peroxyl radical generator on over 100 different kinds of foods, including fruits, vegetables, nuts, dried fruits, spices, cereals, infant, and other foods. Most of the foods were collected from four different regions and during two different seasons in U.S. markets. Total phenolics of each sample were also measured using the Folin-Ciocalteu reagent. Hydrophilic ORAC(FL) values (H-ORAC(FL)) ranged from 0.87 to 2641 micromol of Trolox equivalents (TE)/g among all of the foods, whereas lipophilic ORAC(FL) values (L-ORAC(FL)) ranged from 0.07 to 1611 micromol of TE/g. Generally, L-ORAC(FL) values were <10% of the H-ORAC(FL) values except for a very few samples. Total antioxidant capacity was calculated by combining L-ORAC(FL) and H-ORAC(FL). Differences of ORAC(FL) values in fruits and vegetables from different seasons and regions were relatively large for some foods but could not be analyzed in detail because of the sampling scheme. Two different processing methods, cooking and peeling, were used on selected foods to evaluate the impact of processing on ORAC(FL). The data demonstrated that processing can have significant effects on ORAC(FL). Considering all of the foods analyzed, the relationship between TP and H-ORAC(FL) showed a very weak correlation. Total hydrophilic and lipophilic antioxidant capacity intakes were calculated to be 5558 and 166 micromol of TE/day, respectively, on the basis of data from the USDA Continuing Survey of Food Intakes by Individuals (1994-1996).

J Agric Food Chem. 2004 Jun 16;52(12):4026-37

Interspecific variation in anthocyanins, phenolics, and antioxidant capacity among genotypes of highbush and lowbush blueberries (Vaccinium section cyanococcus spp.).

Recent interest in the possible protective effects of dietary antioxidant compounds against human degenerative disease has prompted investigation of foods such as blueberries (Vaccinium sp.), which have a high antioxidant capacity. Fruit obtained from genotypes of highbush blueberries (Vaccinium corymbosum L.) and lowbush blueberries (Vaccinium angustifolium Aiton) were analyzed for their antioxidant capacity, their content of anthocyanins, and total phenolic compounds, to evaluate the intraspecific and interspecific variation in these parameters. The method of extraction influenced the composition of fruit extracts; the highest anthocyanin and total phenolic contents and antioxidant capacity were found in extracts obtained using a solvent of acidified aqueous methanol. Regardless of the method, lowbush blueberries were consistently higher in anthocyanins, total phenolics, and antioxidant capacity, compared with highbush blueberries. There was no relationship between fruit size and anthocyanin content in either species.

J Agric Food Chem. 2001 Oct;49(10):4761-7

Inhibitory effects of blueberry extract on the production of inflammatory mediators in lipopolysaccharide-activated BV2 microglia.

Sustained microglial activation in the central nervous system (CNS) has been extensively investigated in age-related neurodegenerative diseases and has been postulated to lead to neuronal cell loss in these conditions. Recent studies have shown that antiinflammatory drugs may suppress microglial activation and thus protect against microglial overactivation and subsequent cell loss. Research also suggests that fruits such as berries may contain both antioxidant and antiinflammatory polyphenols that may be important in this regard. Our previous research showed that blueberry extract was effective in preventing oxidant-induced calcium response deficits in M1 (muscarinic receptor)-transfected COS-7 cells. Extrapolating from these findings, the current study investigated the effect of blueberry extract on preventing inflammation-induced activation of microglia. Results indicated that treatments with blueberry extract inhibited the production of the inflammatory mediator nitric oxide (NO) as well as the cytokines interleukin-1beta and tumor necrosis factor-alpha, in cell conditioned media from lipopolysaccharide (LPS)-activated BV2 microglia. Also, mRNA and protein levels of inducible nitric oxide synthase and cyclooxygenase-2 in LPS-activated BV2 cells were significantly reduced by treatments with blueberry extract. The results suggest that blueberry polyphenols attenuate inflammatory responses of brain microglia and could be potentially useful in modulation of inflammatory conditions in the CNS.

J Neurosci Res. 2007 Apr;85(5):1010-7

The beneficial effects of fruit polyphenols on brain aging.

Brain aging is characterized by the continual concession to battle against insults accumulated over the years. One of the major insults is oxidative stress, which is the inability to balance and to defend against the cellular generation of reactive oxygen species (ROS). These ROS cause oxidative damage to nucleic acid, carbohydrate, protein, and lipids. Oxidative damage is particularly detrimental to the brain, where the neuronal cells are largely post-mitotic. Therefore, damaged neurons cannot be replaced readily via mitosis. During normal aging, the brain undergoes morphological and functional modifications resulting in the observed behavioral declines such as decrements in motor and cognitive performance. These declines are augmented by neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), Alzheimer’s disease (AD), and Parkinson’s disease (PD). Research from our laboratory has shown that nutritional antioxidants, such as the polyphenols found in blueberries, can reverse age-related declines in neuronal signal transduction as well as cognitive and motor deficits. Furthermore, we have shown that short-term blueberry (BB) supplementation increases hippocampal plasticity. These findings are briefly reviewed in this paper.

Neurobiol Aging. 2005 Dec;26 Suppl 1:128-32

Blueberry supplementation enhances signaling and prevents behavioral deficits in an Alzheimer disease model.

Previously, we showed that blueberry (BB) supplementation reversed the deleterious effects of aging on motor behavior and neuronal signaling in senescent rodents. We now report that BB-fed (from 4 months of age) APP + PS1 transgenic mice showed no deficits in Y-maze performance (at 12 months of age) with no alterations in amyloid beta burden. It appeared that the protective mechanisms are derived from BB-induced enhancement of memory-associated neuronal signaling (e.g. extracellular signal-regulated kinase) and alterations in neutral sphingomyelin-specific phospholipase C activity. Thus, our data indicate for the first time that it may be possible to overcome genetic predispositions to Alzheimer disease through diet.

Nutr Neurosci. 2003 Jun;6(3):153-62

Beneficial effects of fruit extracts on neuronal function and behavior in a rodent model of accelerated aging.

Exposing young rats to particles of high-energy and charge (HZE particles) enhances indices of oxidative stress and inflammation and disrupts the functioning of the dopaminergic system and behaviors mediated by this system in a manner similar to that seen in aged animals. Previous research has shown that diets supplemented with 2% blueberry or strawberry extracts have the ability to retard and even reverse age-related deficits in behavior and signal transduction in rats, perhaps due to their antioxidant and anti-inflammatory properties. This study evaluated the efficacy of these diets on irradiation-induced deficits in these parameters by maintaining rats on these diets or a control diet for 8 weeks prior to being exposed to whole-body irradiation with 1.5Gy of 1GeV/n high-energy (56)Fe particles. Irradiation impaired performance in the Morris water maze and measures of dopamine release 1 month following radiation; these deficits were protected by the antioxidant diets. The strawberry diet offered better protection against spatial deficits in the maze because strawberry-fed animals were better able to retain place information (a hippocampally mediated behavior) compared to controls. The blueberry diet, on the other hand, seemed to improve reversal learning, a behavior more dependent on intact striatal function. These data suggest that (56)Fe particle irradiation causes deficits in behavior and signaling in rats which were ameliorated by an antioxidant diet and that the polyphenols in these fruits might be acting in different brain regions.

Neurobiol Aging. 2006 Jul 10; [Epub ahead of print]

Feeding rats diets enriched in lowbush blueberries for six weeks decreases ischemia-induced brain damage.

Oxidative stress is an important element in the etiology of ischemic stroke. Lowbush blueberries (Vaccinium angustifolium Aiton) have a high antioxidant capacity and thus we determined whether consumption of lowbush blueberries would protect neurons from stroke-induced damage. Rats were fed AIN-93G diets containing 0 or 14.3% blueberries (g fresh weight/100 g feed) for 6 weeks. Stroke was then simulated by ligation of the left common carotid artery (ischemia), followed by hypoxia. One week later, plasma and urine were collected, and neuronal damage in the hippocampus was determined histologically. In control rats, hypoxia-ischemia resulted in 40 +/- 2% loss of neurons in the hippocampus of the left cerebral hemisphere, as compared to the right hemisphere. Rats on blueberry-supplemented diets lost only 17 +/- 2% of neurons in the ischemic hippocampus. Neuroprotection was observed in the CA1 and CA2 regions, but not CA3 region, of the hippocampus. The blueberry diet had no detectable effects on the plasma or urine oxygen radical absorbance capacity (ORAC) or plasma lipids. We conclude that consumption of lowbush blueberries by rats confers protection to the brain against damage from ischemia, suggesting that inclusion of blueberries in the diet may improve ischemic stroke outcomes.

Nutr Neurosci. 2002 Dec;5(6):427-31

Blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts inhibit growth and stimulate apoptosis of human cancer cells in vitro.

Berry fruits are widely consumed in our diet and have attracted much attention due to their potential human health benefits. Berries contain a diverse range of phytochemicals with biological properties such as antioxidant, anticancer, anti-neurodegerative, and anti-inflammatory activities. In the current study, extracts of six popularly consumed berries—blackberry, black raspberry, blueberry, cranberry, red raspberry and strawberry—were evaluated for their phenolic constituents using high performance liquid chromatography with ultraviolet (HPLC-UV) and electrospray ionization mass spectrometry (LC-ESI-MS) detection. The major classes of berry phenolics were anthocyanins, flavonols, flavanols, ellagitannins, gallotannins, proanthocyanidins, and phenolic acids. The berry extracts were evaluated for their ability to inhibit the growth of human oral (KB, CAL-27), breast (MCF-7), colon (HT-29, HCT116), and prostate (LNCaP) tumor cell lines at concentrations ranging from 25 to 200 micro g/mL. With increasing concentration of berry extract, increasing inhibition of cell proliferation in all of the cell lines were observed, with different degrees of potency between cell lines. The berry extracts were also evaluated for their ability to stimulate apoptosis of the COX-2 expressing colon cancer cell line, HT-29. Black raspberry and strawberry extracts showed the most significant pro-apoptotic effects against this cell line. The data provided by the current study and from other laboratories warrants further investigation into the chemopreventive and chemotherapeutic effects of berries using in vivo models.

J Agric Food Chem. 2006 Dec 13;54(25):9329-39

Effect of anthocyanin fractions from selected cultivars of Georgia-grown blueberries on apoptosis and phase II enzymes.

In recent years, considerable attention has been paid to anthocyanins due to their abilities to inhibit oxidative stress and cell proliferation. The regulations of apoptosis and the phase II enzymes glutathione-S-transferase (GST) and quinone reductase (QR) are other potential mechanisms through which flavonoids such as anthocyanins may prevent cancer. Our study confirmed that anthocyanin fractions from high bush blueberry cultivars increased apoptosis using two different methods: DNA fragmentation and caspase-3 activity. The effect of anthocyanins on the activity of the detoxifying enzymes GST and QR was also determined. Major anthocyanins identified were delphinidin, cyanidin, peonidin, petunidin, and malvidin. In Tifblue and Powderblue cultivars, DNA fragmentation increased at anthocyanin concentrations from 50 to 150 microg/mL, but cells treated with the anthocyanin fraction of Brightblue and Brightwell showed a prominent ladder at 50-100 microg/mL when compared to cells treated with 150 microg/mL. There was a significant difference in the caspase-3 activity (P < 0.05) between the control cells and the cells treated with anthocyanins from all of the cultivars. The response correlated positively with dose. The QR activity was lower in all cells treated with an anthocyanin fraction from Tifblue, Powderblue, Brightblue, and Brightwell cultivars than in control cells (P < 0.05). The activity decreased gradually when treated with increased concentrations of anthocyanin fractions (50-150 microg/mL) in the Tifblue and Powderblue cultivars. The GST activity was lower (P < 0.05) in cells treated with anthocyanin fractions from all of the cultivars and at all concentrations. These results indicated that apoptosis was confirmed in HT-29 cells when treated with anthocyanins from blueberry cultivars at 50-150 microg/mL concentrations, but these same concentrations decrease QR and GST activities rather than induce them.

J Agric Food Chem. 2007 Apr 18;55(8):3180-5

Pterostilbene, an active constituent of blueberries, suppresses aberrant crypt foci formation in the azoxymethane-induced colon carcinogenesis model in rats.

PURPOSE: Epidemiologic studies have linked the consumption of fruits and vegetables to reduced risk of several types of cancer. Laboratory animal model studies have provided evidence that stilbenes, phenolic compounds present in grapes and blueberries, play a role in inhibiting the risk of certain cancers. Pterostilbene, a naturally occurring stilbene from blueberries, was tested for its preventive activity against colon carcinogenesis. EXPERIMENTAL DESIGN: Experiments were designed to study the inhibitory effect of pterostilbene against the formation of azoxymethane-induced colonic aberrant crypt foci (ACF) preneoplastic lesions in male F344 rats. Beginning at 7 weeks of age, rats were treated with azoxymethane (15 mg/kg body weight s.c., once weekly for 2 weeks). One day after the second azoxymethane treatment, rats were fed experimental diets containing 0 or 40 ppm of pterostilbene. At 8 weeks after the second azoxymethane treatment, all rats were sacrificed, and colons were evaluated for ACF formation and for inhibition of inducible nitric oxide synthase (iNOS) and proliferating cell nuclear antigen. Effects on mucin MUC2 were also determined. RESULTS: Administration of pterostilbene for 8 weeks significantly suppressed azoxymethane-induced formation of ACF (57% inhibition, P < 0.001) and multiple clusters of aberrant crypts (29% inhibition, P < 0.01). Importantly, dietary pterostilbene also suppressed azoxymethane-induced colonic cell proliferation and iNOS expression. Inhibition of iNOS expression by pterostilbene was confirmed in cultured human colon cancer cells. CONCLUSIONS: The results of the present study suggest that pterostilbene, a compound present in blueberries, is of great interest for the prevention of colon cancer.

Clin Cancer Res. 2007 Jan 1;13(1):350-5

Anti-diabetic properties of the Canadian lowbush blueberry Vaccinium angustifolium Ait.

Incidence of type II diabetes is rapidly increasing worldwide. In order to identify complementary or alternative approaches to existing medications, we studied anti-diabetic properties of Vaccinium angustifolium Ait., a natural health product recommended for diabetes treatment in Canada. Ethanol extracts of root, stem, leaf, and fruit were tested at 12.5 microg/ml for anti-diabetic activity in peripheral tissues and pancreatic beta cells using a variety of cell-based bioassays. Specifically, we assessed: (1) deoxyglucose uptake in differentiated C2C12 muscle cells and 3T3-L1 adipocytes; (2) glucose-stimulated insulin secretion (GSIS) in beta TC-tet pancreatic beta cells; (3) beta cell proliferation in beta TC-tet cells; (4) lipid accumulation in differentiating 3T3-L1 cells; (5) protection against glucose toxicity in PC12 cells. Root, stem, and leaf extracts significantly enhanced glucose transport in C2C12 cells by 15-25% in presence and absence of insulin after 20 h of incubation; no enhancement resulted from a 1 h exposure. In 3T3 cells, only the root and stem extracts enhanced uptake, and this effect was greater after 1 h than after 20 h; uptake was increased by up to 75% in absence of insulin. GSIS was potentiated by a small amount in growth-arrested beta TC-tet cells incubated overnight with leaf or stem extract. However, fruit extracts were found to increase 3H-thymidine incorporation in replicating beta TC-tet cells by 2.8-fold. Lipid accumulation in differentiating 3T3-L1 cells was accelerated by root, stem, and leaf extracts by as much as 6.5-fold by the end of a 6-day period. Stem, leaf, and fruit extracts reduced apoptosis by 20-33% in PC12 cells exposed to elevated glucose for 96 h. These results demonstrate that V. angustifolium contains active principles with insulin-like and glitazone-like properties, while conferring protection against glucose toxicity. Enhancement of proliferation in beta cells may represent another potential anti-diabetic property. Extracts of the Canadian blueberry thus show promise for use as a complementary anti-diabetic therapy.

Phytomedicine. 2006 Nov;13(9-10):612-23

Effective separation of potent antiproliferation and antiadhesion components from wild blueberry (Vaccinium angustifolium Ait.) fruits.

Extracts from wild blueberry (Vaccinium angustifolium Ait.) were separated into proanthocyanidin-rich fractions using liquid vacuum and open column chromatography on Toyopearl and Sephadex LH-20, respectively. Fractions were characterized using analytical tools including mass spectrometry and NMR spectroscopy; fraction composition was correlated with bioactivity using antiproliferation and antiadhesion in vitro assays. There was a significant positive correlation between proanthocyanidin content of different fractions and biological activity in both the antiproliferation and antiadhesion assays. Two fractions containing primarily 4—>8-linked oligomeric proanthocyanidins with average degrees of polymerization (DPn) of 3.25 and 5.65 inhibited adhesion of Escherichia coli responsible for urinary tract infections. Only the fraction with a DPn of 5.65 had significant antiproliferation activity against human prostate and mouse liver cancer cell lines. These findings suggest both antiadhesion and antiproliferation activity are associated with high molecular weight proanthocyanidin oligomers found in wild blueberry fruits.

J Agric Food Chem. 2004 Oct 20;52(21):6433-42