Life Extension Final Clerance Sale

Abstracts

LE Magazine October 2007
Abstracts

Lipoic acid

Effect of combined treatment with alpha-Lipoic acid and acetyl-L-carnitine on vascular function and blood pressure in patients with coronary artery disease.

Mitochondria produce reactive oxygen species that may contribute to vascular dysfunction. alpha-Lipoic acid and acetyl-L-carnitine reduce oxidative stress and improve mitochondrial function. In a double-blind crossover study, the authors examined the effects of combined alpha-lipoic acid/acetyl-L-carnitine treatment and placebo (8 weeks per treatment) on vasodilator function and blood pressure in 36 subjects with coronary artery disease. Active treatment increased brachial artery diameter by 2.3% (P=.008), consistent with reduced arterial tone. Active treatment tended to decrease systolic blood pressure for the whole group (P=.07) and had a significant effect in the subgroup with blood pressure above the median (151+/-20 to 142+/-18 mm Hg; P=.03) and in the subgroup with the metabolic syndrome (139+/-21 to 130+/-18 mm Hg; P=.03). Thus, mitochondrial dysfunction may contribute to the regulation of blood pressure and vascular tone. Further studies are needed to confirm these findings and determine the clinical utility of alpha-lipoic acid/acetyl-L-carnitine as antihypertensive therapy.

J Clin Hypertens (Greenwich). 2007 Apr;9(4):249-55

Oral treatment with alpha-lipoic acid improves symptomatic diabetic polyneuropathy: the SYDNEY 2 trial.

OBJECTIVE: The aim of this trial was to evaluate the effects of alpha-lipoic acid (ALA) on positive sensory symptoms and neuropathic deficits in diabetic patients with distal symmetric polyneuropathy (DSP). RESEARCH DESIGN AND METHODS: In this multicenter, randomized, double-blind, placebo-controlled trial, 181 diabetic patients in Russia and Israel received once-daily oral doses of 600 mg (n = 45) (ALA600), 1,200 mg (n = 47) (ALA1200), and 1,800 mg (ALA1800) of ALA (n = 46) or placebo (n = 43) for 5 weeks after a 1-week placebo run-in period. The primary outcome measure was the change from baseline of the Total Symptom Score (TSS), including stabbing pain, burning pain, paresthesia, and asleep numbness of the feet. Secondary end points included individual symptoms of TSS, Neuropathy Symptoms and Change (NSC) score, Neuropathy Impairment Score (NIS), and patients’ global assessment of efficacy. RESULTS: Mean TSS did not differ significantly at baseline among the treatment groups and on average decreased by 4.9 points (51%) in ALA600, 4.5 (48%) in ALA1200, and 4.7 (52%) in ALA1800 compared with 2.9 points (32%) in the placebo group (all P < 0.05 vs. placebo). The corresponding response rates (>/=50% reduction in TSS) were 62, 50, 56, and 26%, respectively. Significant improvements favoring all three ALA groups were also noted for stabbing and burning pain, the NSC score, and the patients’ global assessment of efficacy. The NIS was numerically reduced. Safety analysis showed a dose-dependent increase in nausea, vomiting, and vertigo. CONCLUSIONS: Oral treatment with ALA for 5 weeks improved neuropathic symptoms and deficits in patients with DSP. An oral dose of 600 mg once daily appears to provide the optimum risk-to-benefit ratio.

Diabetes Care. 2006 Nov;29(11):2365-70

Lipoic acid as a novel treatment for Alzheimer’s disease and related dementias.

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that destroys patient memory and cognition, communication ability with the social environment and the ability to carry out daily activities. Despite extensive research into the pathogenesis of AD, a neuroprotective treatment —particularly for the early stages of disease—remains unavailable for clinical use. In this review, we advance the suggestion that lipoic acid (LA) may fulfil this therapeutic need. A naturally occurring precursor of an essential cofactor for mitochondrial enzymes, including pyruvate dehydrogenase (PDH) and alpha-ketoglutarate dehydrogenase (KGDH), LA has been shown to have a variety of properties which can interfere with pathogenic principles of AD. For example, LA increases acetylcholine (ACh) production by activation of choline acetyltransferase and increases glucose uptake, thus supplying more acetyl-CoA for the production of ACh. LA chelates redox-active transition metals, thus inhibiting the formation of hydroxyl radicals and also scavenges reactive oxygen species (ROS), thereby increasing the levels of reduced glutathione. Via the same mechanisms, downregulation redox-sensitive inflammatory processes is also achieved. Furthermore, LA can scavenge lipid peroxidation products such as hydroxynonenal and acrolein. The reduced form of LA, dihydrolipoic acid (DHLA), is the active compound responsible for most of these beneficial effects. R-alpha-LA can be applied instead of DHLA, as it is reduced by mitochondrial lipoamide dehydrogenase, a part of the PDH complex. In this review, the properties of LA are explored with particular emphasis on how this agent, particularly the R-alpha-enantiomer, may be effective to treat AD and related dementias.

Pharmacol Ther. 2007 Jan;113(1):154-64

A randomized double-blind placebo-controlled trial of thioctic acid in migraine prophylaxis.

BACKGROUND: Impaired mitochondrial phosphorylation potential may play a role in migraine pathogenesis. Metabolic enhancers, such as riboflavin or coenzyme Q, are effective in migraine prophylaxis and quasi-devoid of adverse effects. Thioctic acid (-lipoic acid) is another substance known to enhance energy metabolism in mitochondria and to be beneficial in diabetic neuropathy. OBJECTIVE: After an open pilot study suggesting its therapeutic antimigraine potentials, we embarked therefore in a randomized controlled trial of thioctic acid (Thioctacid) in migraine prophylaxis steered by the Belgian Headache Society. METHODS: Five Belgian centers recruited 54 migraineurs (43 migraine without aura, 11 with aura; mean age 38 +/- 8 years; 7 males). After a 1-month single-blinded run-in period, 44 patients received either placebo (n = 18) or thioctic acid 600 mg p.o./day (n = 26) for 3 months. RESULTS: Statistical analysis was carried out on an intention-to-treat basis. Monthly attack frequency tended to be reduced between run-in and the 3rd month of treatment in the thioctic acid group compared to placebo (P= .06). The proportion of 50% responders was not significantly different between thioctic acid (30.8%) and placebo (27.8%). Within-group analyses showed a significant reduction of attack frequency (P= .005), headache days (P= .009), and headache severity (P= .03) in patients treated with thioctic acid for 3 months, while these outcome measures remained unchanged in the placebo group. No adverse effects were reported. For logistical reasons this trial was interrupted before the planned 80 patients were enrolled. CONCLUSION: Albeit underpowered, this study tends to indicate that thioctic acid may be beneficial in migraine prophylaxis. Before any firm conclusion can be drawn, however, a large multicenter trial is necessary.

Headache. 2007 Jan;47(1):52-7

Randomized, placebo-controlled, double blind study on the clinical efficacy of a cream containing 5% alpha-lipoic acid related to photoageing of facial skin.

BACKGROUND: alpha-lipoic acid (LA) or the reduced form dihydrolipoate (DHLA) is a potent scavenger with anti-inflammatory properties. Previous uncontrolled studies with topical treatment with 5% LA-containing creams indicate a beneficial effect on photoageing skin. OBJECTIVE: The purpose of this study was to investigate whether a cream containing 5% LA showed any advantages concerning a number of the criteria associated with ageing of the facial skin, compared with an identical cream lacking LA. MATERIAL AND METHODS: Thirty-three women, mean age 54.4 years, were included in this controlled study. After randomization half the face was treated twice daily for 12 weeks with the LA cream and the other half with the control cream. The following methods of assessment were used: self-evaluation by the test subjects, clinical evaluation, photographic evaluation and laser profilometry. Profilometry was performed before the start of treatment and at the end. RESULTS: All four methods of assessment showed a statistically significant improvement on the LA-treated half of the face. Laser profilometry, the most objective method used, showed an average decrease in skin roughness of 50.8% (44.9-54.0) on the LA-treated side, compared with 40.7% (32.4-48.7) on the placebo-treated half of the face P < 0.001 (Wilcoxon matched pairs test). CONCLUSIONS: It is indicated that 12 weeks of treatment with a cream containing 5% LA improves clinical characteristics related to photoageing of facial skin.

Br J Dermatol. 2003 Oct;149(4):841-9

Alpha lipoic acid inhibits human T-cell migration: implications for multiple sclerosis.

We have demonstrated previously the ability of the antioxidant alpha lipoic acid (ALA) to suppress and treat a model of multiple sclerosis (MS), relapsing experimental autoimmune encephalomyelitis (EAE). We describe the effects of ALA and its reduced form, dihydrolipoic acid (DHLA), on the transmigration of human Jurkat T cells across a fibronectin barrier in a transwell system. ALA and DHLA inhibited migration of Jurkat cells in a dose-dependent fashion by 16-75%. ALA and DHLA reduced matrix metalloproteinase-9 (MMP-9) activity by 18-90% in Jurkat cell supernatants. GM6001, a synthetic inhibitor of MMP, reduced Jurkat cell migration, but not as effectively as ALA and DHLA did. Both ALA and DHLA downmodulated the surface expression of the alpha4beta1 integrin (very late activation-4 antigen; VLA-4), which binds fibronectin and its endothelial cell ligand vascular cell adhesion molecule-1 (VCAM-1). Moreover, ALA, but not DHLA, reduced MMP-9-specific mRNA and extracellular MMP-9 from Jurkat cells and their culture supernatants as detected by relative reverse transcriptase-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. ALA and DHLA inhibited Jurkat cell migration and have different mechanisms for inhibiting MMP-9 activity. These data, coupled with its ability to treat relapsing EAE, suggest that ALA warrants investigation as a therapy for MS.

J Neurosci Res. 2004 Nov 1;78(3):362-70

Antioxidants reduce cone cell death in a model of retinitis pigmentosa.

Retinitis pigmentosa (RP) is a label for a group of diseases caused by a large number of mutations that result in rod photoreceptor cell death followed by gradual death of cones. The mechanism of cone cell death is uncertain. Rods are a major source of oxygen utilization in the retina and, after rods die, the level of oxygen in the outer retina is increased. In this study, we used the rd1 mouse model of RP to test the hypothesis that cones die from oxidative damage. A mixture of antioxidants was selected to try to maximize protection against oxidative damage achievable by exogenous supplements; alpha-tocopherol (200 mg/kg), ascorbic acid (250 mg/kg), Mn(III)tetrakis (4-benzoic acid) porphyrin (10 mg/kg), and alpha-lipoic acid (100 mg/kg). Mice were treated with daily injections of the mixture or each component alone between postnatal day (P)18 and P35. Between P18 and P35, there was an increase in two biomarkers of oxidative damage, carbonyl adducts measured by ELISA and immunohistochemical staining for acrolein, in the retinas of rd1 mice. The staining for acrolein in remaining cones at P35 was eliminated in antioxidant-treated rd1 mice, confirming that the treatment markedly reduced oxidative damage in cones; this was accompanied by a 2-fold increase in cone cell density and a 50% increase in medium-wavelength cone opsin mRNA. Antioxidants also caused some preservation of cone function based upon photopic electroretinograms. These data support the hypothesis that gradual cone cell death after rod cell death in RP is due to oxidative damage, and that antioxidant therapy may provide benefit.

Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11300-5

Neuroprotection by the metabolic antioxidant alpha-lipoic acid.

Reactive oxygen species are thought to be involved in a number of types of acute and chronic pathologic conditions in the brain and neural tissue. The metabolic antioxidant alpha-lipoate (thioctic acid, 1, 2-dithiolane-3-pentanoic acid; 1, 2-dithiolane-3 valeric acid; and 6, 8-dithiooctanoic acid) is a low molecular weight substance that is absorbed from the diet and crosses the blood-brain barrier. alpha-Lipoate is taken up and reduced in cells and tissues to dihydrolipoate, which is also exported to the extracellular medium; hence, protection is afforded to both intracellular and extracellular environments. Both alpha-lipoate and especially dihydrolipoate have been shown to be potent antioxidants, to regenerate through redox cycling other antioxidants like vitamin C and vitamin E, and to raise intracellular glutathione levels. Thus, it would seem an ideal substance in the treatment of oxidative brain and neural disorders involving free radical processes. Examination of current research reveals protective effects of these compounds in cerebral ischemia-reperfusion, excitotoxic amino acid brain injury, mitochondrial dysfunction, diabetes and diabetic neuropathy, inborn errors of metabolism, and other causes of acute or chronic damage to brain or neural tissue. Very few neuropharmacological intervention strategies are currently available for the treatment of stroke and numerous other brain disorders involving free radical injury. We propose that the various metabolic antioxidant properties of alpha-lipoate relate to its possible therapeutic roles in a variety of brain and neuronal tissue pathologies: thiols are central to antioxidant defense in brain and other tissues. The most important thiol antioxidant, glutathione, cannot be directly administered, whereas alpha-lipoic acid can. In vitro, animal, and preliminary human studies indicate that alpha-lipoate may be effective in numerous neurodegenerative disorders.

Free Radic Biol Med. 1997;22(1-2):359-78

Studies on the efficacy of lipoate and dihydrolipoate in the alteration of cadmium2+ toxicity in isolated hepatocytes.

Lipoate (thioctic acid) is presently used in therapy of a variety of diseases such as liver and neurological disorders. However, nothing is known about the efficacy of lipoate and its reduced form dihydrolipoate in acute cadmium (Cd2+) toxicity which involves severe liver disturbances. Therefore, we investigated the effects of these redox compounds on Cd2(+)-induced injuries in isolated rat hepatocytes. The cells were coincubated with 150 microM Cd2+ and either 1.5-6.0 mM lipoate or 17-89 microM dihydrolipoate for up to 90 min and Cd2+ uptake as well as viability criteria were monitored. Both exposure regimens diminished Cd2+ uptake in correspondence to time and concentration. They also ameliorated Cd2(+)-induced cell deterioration as reflected by the decrease in Cd2(+)-induced membrane damage (leakage of aspartate aminotransferase), by the lessening of the Cd2(+)-stimulated lipid peroxidation (TBA-reactants) and by the increase in Cd2(+)-depleted cellular glutathione (GSH + 2 GSSG). Half-maximal protection was achieved at molar ratios of 9.9 to 19 (lipoate vs. Cd2+) and 0.25 to 0.74 (dihydrolipoate vs. Cd2+), indicating a 19.5 to 50.6 lower protective efficacy of lipoate as compared to dihydrolipoate. Lipoate induced an increase in extracellular acid-soluble thiols different from glutathione. It is suggested that dihydrolipoate primarily protects cells by extracellular chelation of Cd2+, whereas intracellular reduction of lipoate to the dihydro-compound followed by complexation of both intra- and extracellular Cd2+ contributes to the amelioration provided by lipoate.

Biochim Biophys Acta. 1990 May 22;1052(3):386-91

Protective role of DL-alpha-lipoic acid against mercury-induced neural lipid peroxidation.

Experimental neurotoxicity in rat models was induced by an intramuscular injection of mercuric chloride. dl-alpha-lipoic acid was administered as an antidote in three protocols of experimental design. Two protocols of short-term exposure of mercury was designed, one with prophylactic therapy and the other with curative therapy of lipoic acid. The third protocol was with prophylactic therapy of lipoic acid on long-term exposure of mercury. Enhanced lipid peroxidation, depleted non-enzymic and perturbed enzymic antioxidant status were observed in cerebral cortex, cerebellum and sciatic nerves of the toxic groups. The ameliorating effect of lipoic acid and its therapeutic efficacy during various modes of therapy, on the antioxidant status was established in the nervous tissues.

Pharmacol Res. 1999 Jan;39(1):67-80