Weight Loss Sale


LE Magazine June 2008

Lipoic acid

Randomized, placebo-controlled, double blind study on the clinical efficacy of a cream containing 5% alpha-lipoic acid related to photoageing of facial skin.

BACKGROUND: alpha-lipoic acid (LA) or the reduced form dihydrolipoate (DHLA) is a potent scavenger with anti-inflammatory properties. Previous uncontrolled studies with topical treatment with 5% LA-containing creams indicate a beneficial effect on photoageing skin. OBJECTIVE: The purpose of this study was to investigate whether a cream containing 5% LA showed any advantages concerning a number of the criteria associated with ageing of the facial skin, compared with an identical cream lacking LA. MATERIAL AND METHODS: Thirty-three women, mean age 54.4 years, were included in this controlled study. After randomization half the face was treated twice daily for 12 weeks with the LA cream and the other half with the control cream. The following methods of assessment were used: self-evaluation by the test subjects, clinical evaluation, photographic evaluation and laser profilometry. Profilometry was performed before the start of treatment and at the end. RESULTS: All four methods of assessment showed a statistically significant improvement on the LA-treated half of the face. Laser profilometry, the most objective method used, showed an average decrease in skin roughness of 50.8% (44.9-54.0) on the LA-treated side, compared with 40.7% (32.4-48.7) on the placebo-treated half of the face P < 0.001 (Wilcoxon matched pairs test). CONCLUSIONS: It is indicated that 12 weeks of treatment with a cream containing 5% LA improves clinical characteristics related to photoageing of facial skin.

Br J Dermatol. 2003 Oct;149(4):841-9

Exercise training and the antioxidant alpha-lipoic acid in the treatment of insulin resistance and type 2 diabetes.

One hallmark of the insulin-resistant state of prediabetes and overt type 2 diabetes is an impaired ability of insulin to activate glucose transport in skeletal muscle, due to defects in IRS-1-dependent signaling. An emerging body of evidence indicates that one potential factor in the multifactorial etiology of skeletal muscle insulin resistance is oxidative stress, an imbalance between the cellular exposure to an oxidant stress and the cellular antioxidant defenses. Exposure of skeletal muscle to an oxidant stress leads to impaired insulin signaling and subsequently to reduced glucose transport activity. Numerous studies have demonstrated that treatment of insulin-resistant animals and type 2 diabetic humans with antioxidants, including alpha-lipoic acid (ALA), is associated with improvements in skeletal muscle glucose transport activity and whole-body glucose tolerance. An additional intervention that is effective in ameliorating the skeletal muscle insulin resistance of prediabetes and type 2 diabetes is endurance exercise training. Recent investigations have demonstrated that the combination of exercise training and antioxidant treatment using ALA in an animal model of obesity-associated insulin resistance provides a unique interactive effect resulting in a greater improvement in insulin action on skeletal muscle glucose transport than either intervention individually. Moreover, this interactive effect of exercise training and ALA is due in part to improvements in IRS-1-dependent insulin signaling. These studies highlight the effectiveness of combining endurance exercise training and antioxidants in beneficially modulating the molecular defects in insulin action observed in insulin-resistant skeletal muscle.

Free Radic Biol Med. 2006 Jan 1;40(1):3-12

Alpha-lipoic acid in the treatment of diabetic peripheral and cardiac autonomic neuropathy.

Antioxidant treatment has been shown to prevent nerve dysfunction in experimental diabetes, providing a rationale for a potential therapeutic value in diabetic patients. The effects of the antioxidant alpha-lipoic acid (thioctic acid) were studied in two multicenter, randomized, double-blind placebo-controlled trials. In the Alpha-Lipoic Acid in Diabetic Neuropathy Study, 328 patients with NIDDM and symptomatic peripheral neuropathy were randomly assigned to treatment with intravenous infusion of alpha-lipoic acid using three doses (ALA 1,200 mg; 600 mg; 100 mg) or placebo (PLAC) over 3 weeks. The total symptom score (TSS) (pain, burning, paresthesia, and numbness) in the feet decreased significantly from baseline to day 19 in ALA 1,200 and ALA 600 vs. PLAC. Each of the four individual symptom scores was significantly lower in ALA 600 than in PLAC after 19 days (all P < 0.05). The total scale of the Hamburg Pain Adjective List (HPAL) was significantly reduced in ALA 1,200 and ALA 600 compared with PLAC after 19 days (both P < 0.05). In the Deutsche Kardiale Autonome Neuropathie Studie, patients with NIDDM and cardiac autonomic neuropathy diagnosed by reduced heart rate variability were randomly assigned to treatment with a daily oral dose of 800 mg alpha-lipoic acid (ALA) (n = 39) or placebo (n = 34) for 4 months. Two out of four parameters of heart rate variability at rest were significantly improved in ALA compared with placebo. A trend toward a favorable effect of ALA was noted for the remaining two indexes. In both studies, no significant adverse events were observed. In conclusion, intravenous treatment with alpha-lipoic acid (600 mg/day) over 3 weeks is safe and effective in reducing symptoms of diabetic peripheral neuropathy, and oral treatment with 800 mg/day for 4 months may improve cardiac autonomic dysfunction in NIDDM.

Diabetes. 1997 Sep;46 Suppl 2:S62-6

R-alpha-Lipoic acid and acetyl-L: -carnitine complementarily promote mitochondrial biogenesis in murine 3T3-L1 adipocytes.

AIMS/HYPOTHESIS: The aim of the study was to address the importance of mitochondrial function in insulin resistance and type 2 diabetes, and also to identify effective agents for ameliorating insulin resistance in type 2 diabetes. We examined the effect of two mitochondrial nutrients, R-alpha-lipoic acid (LA) and acetyl-L: -carnitine (ALC), as well as their combined effect, on mitochondrial biogenesis in 3T3-L1 adipocytes. METHODS: Mitochondrial mass and oxygen consumption were determined in 3T3-L1 adipocytes cultured in the presence of LA and/or ALC for 24 h. Mitochondrial DNA and mRNA from peroxisome proliferator-activated receptor gamma and alpha (Pparg and Ppara) and carnitine palmitoyl transferase 1a (Cpt1a), as well as several transcription factors involved in mitochondrial biogenesis, were evaluated by real-time PCR or electrophoretic mobility shift (EMSA) assay. Mitochondrial complexes proteins were measured by western blot and fatty acid oxidation was measured by quantifying CO(2) production from [1-(14)C]palmitate. RESULTS: Treatments with the combination of LA and ALC at concentrations of 0.1, 1 and 10 mumol/l for 24 h significantly increased mitochondrial mass, expression of mitochondrial DNA, mitochondrial complexes, oxygen consumption and fatty acid oxidation in 3T3L1 adipocytes. These changes were accompanied by an increase in expression of Pparg, Ppara and Cpt1a mRNA, as well as increased expression of peroxisome proliferator-activated receptor (PPAR) gamma coactivator 1 alpha (Ppargc1a), mitochondrial transcription factor A (Tfam) and nuclear respiratory factors 1 and 2 (Nrf1 and Nrf2). However, the treatments with LA or ALC alone at the same concentrations showed little effect on mitochondrial function and biogenesis. CONCLUSIONS/INTERPRETATION: We conclude that the combination of LA and ALC may act as PPARG/A dual ligands to complementarily promote mitochondrial synthesis and adipocyte metabolism.

Diabetologia. 2008 Jan;51(1):165-74

Mitochondrial ageing and the beneficial role of alpha-lipoic acid.

Oxidative damage has been implicated to be a major causative factor in the decline in physiological functions that occur during the ageing process. Mitochondria are known to be a rich source for the production of free radicals and, consequently, mitochondrial components are susceptible to lipid peroxidation (LPO) that decreases respiratory activity. In the present investigation, we have evaluated mitochondrial LPO, 8-oxo-dG, oxidized glutathione, reduced glutathione, ATP, lipoic acid, TCA cycle enzymes and electron transport chain (ETC) complex activities in the brain of young versus aged rats. In aged rats, the contents of LPO, oxidized glutathione and 8-oxo-dG were high whereas reduced glutathione, ATP, lipoic acid, TCA cycle enzymes and ETC complex activities were found to be low. Lipoic acid administration to aged rats reduced the levels of mitochondrial LPO, 8-oxo-dG and oxidized glutathione and enhanced reduced glutathione, ATP, lipoic acid and ETC complex activities. In young rats lipoic acid administration showed only minimal lowering the levels of LPO, 8-oxo-dG and oxidized glutathione and slight increase in the levels of reduced glutathione, ATP, lipoic acid, TCA cycle enzymes and ETC complex activities. These findings suggest that the dithiol, lipoic acid, provides protection against age-related oxidative damage in the mitochondria of aged rats.

Neurochem Res. 2007 Sep;32(9):1552-8

Dietary alpha-lipoic acid supplementation inhibits atherosclerotic lesion development in apolipoprotein E-deficient and apolipoprotein E/low-density lipoprotein receptor-deficient mice.

BACKGROUND: Vascular inflammation and lipid deposition are prominent features of atherosclerotic lesion formation. We have shown previously that the dithiol compound alpha-lipoic acid (LA) exerts antiinflammatory effects by inhibiting tumor necrosis factor-alpha- and lipopolysaccharide-induced endothelial and monocyte activation in vitro and lipopolysaccharide-induced acute inflammatory responses in vivo. Here, we investigated whether LA inhibits atherosclerosis in apolipoprotein E-deficient (apoE-/-) and apoE/low-density lipoprotein receptor-deficient mice, 2 well-established animal models of human atherosclerosis. METHODS AND RESULTS: Four-week-old female apoE-/- mice (n=20 per group) or apoE/low-density lipoprotein receptor-deficient mice (n=21 per group) were fed for 10 weeks a Western-type chow diet containing 15% fat and 0.125% cholesterol without or with 0.2% (wt/wt) R,S-LA or a normal chow diet containing 4% fat without or with 0.2% (wt/wt) R-LA, respectively. Supplementation with LA significantly reduced atherosclerotic lesion formation in the aortic sinus of both mouse models by approximately 20% and in the aortic arch and thoracic aorta of apoE-/- and apoE/low-density lipoprotein receptor-deficient mice by approximately 55% and 40%, respectively. This strong antiatherogenic effect of LA was associated with almost 40% less body weight gain and lower serum and very low-density lipoprotein levels of triglycerides but not cholesterol. In addition, LA supplementation reduced aortic expression of adhesion molecules and proinflammatory cytokines and aortic macrophage accumulation. These antiinflammatory effects of LA were more pronounced in the aortic arch and the thoracic aorta than in the aortic sinus, reflecting the corresponding reductions in atherosclerosis. CONCLUSIONS: Our study shows that dietary LA supplementation inhibits atherosclerotic lesion formation in 2 mouse models of human atherosclerosis, an inhibition that appears to be due to the “antiobesity,” antihypertriglyceridemic, and antiinflammatory effects of LA. LA may be a useful adjunct in the prevention and treatment of atherosclerotic vascular diseases.

Circulation. 2008 Jan 22;117(3):421-8

Memory impairment, oxidative damage and apoptosis induced by space radiation: ameliorative potential of alpha-lipoic acid.

Exposure to high-energy particle radiation (HZE) may cause oxidative stress and cognitive impairment in the same manner that seen in aged mice. This phenomenon has raised the concerns about the safety of an extended manned mission into deep space where a significant portion of the radiation burden would come from HZE particle radiation. The present study aimed at investigating the role of alpha-lipoic acid against space radiation-induced oxidative stress and antioxidant status in cerebellum and its correlation with cognitive dysfunction. We observed spontaneous motor activities and spatial memory task of mice using pyroelectric infrared sensor and programmed video tracking system, respectively. Whole body irradiation of mice with high-LET (56)Fe beams (500 MeV/nucleon, 1.5 Gy) substantially impaired the reference memory at 30 day post-irradiation; however, no significant effect was observed on motor activities of mice. Acute intraperitoneal treatment of mice with alpha-lipoic acid prior to irradiation significantly attenuated such memory dysfunction. Radiation-induced apoptotic damage in cerebellum was examined using a neuronal-specific terminal deoxynucleotidyl transferase-mediated nick end-labeling method (NeuroTACS). Radiation-induced apoptotic and necrotic cell death of granule cells and Purkinje cells were inhibited significantly by alpha-lipoic acid pretreatment. Alpha-lipoic acid pretreatment exerted a very high magnitude of protection against radiation-induced augmentation of DNA damage (comet tail movement and serum 8-OHdG), lipid proxidation products (MDA+HAE) and protein carbonyls in mice cerebellum. Further, radiation-induced decline of non-protein sulfhydryl (NP-SH) contents of cerebellum and plasma ferric reducing power (FRAP) was also inhibited by alpha-lipoic acid pre-treatment. Results clearly indicate that alpha-lipoic acid is a potent neuroprotective antioxidant. Moreover, present finding also support the idea suggesting the cerebellar involvement in cognition.

Behav Brain Res. 2008 Mar 5;187(2):387-95

The long-term survival of a patient with pancreatic cancer with metastases to the liver after treatment with the intravenous alpha-lipoic acid/low-dose naltrexone protocol.

The authors describe the long-term survival of a patient with pancreatic cancer without any toxic adverse effects. The treatment regimen includes the intravenous alpha-lipoic acid and low-dose naltrexone (ALA-N) protocol and a healthy lifestyle program. The patient was told by a reputable university oncology center in October 2002 that there was little hope for his survival. Today, January 2006, however, he is back at work, free from symptoms, and without appreciable progression of his malignancy. The integrative protocol described in this article may have the possibility of extending the life of a patient who would be customarily considered to be terminal. The authors believe that life scientists will one day develop a cure for metastatic pancreatic cancer, perhaps via gene therapy or another biological platform. But until such protocols come to market, the ALA-N protocol should be studied and considered, given its lack of toxicity at levels reported. Several other patients are on this treatment protocol and appear to be doing well at this time.

Integr Cancer Ther. 2006 Mar;5(1):83-9

Alpha-lipoic acid modulates ovarian surface epithelial cell growth.

OBJECTIVE: The intracellular redox state plays an important role in controlling inflammation. Clinical and laboratory data suggest that inflammation can lead to tumor progression. We hypothesized that restoring intracellular redox control would inhibit inflammation and subsequently tumor progression. Our studies were designed to investigate the effect of alpha-lipoic acid (ALA), a naturally occurring antioxidant, on a key inflammatory signaling pathway and cell proliferation in normal and tumorigenic ovarian surface epithelial cells. METHODS: Normal and tumorigenic ovarian surface epithelial cells were isolated as described by Roby and coworkers [Roby KF, Taylor CC, Sweetwood JP, Cheng Y, Pace JL, Tawpik O, Persons DL, Smith PG, Terranova PF, Development of a syngeneic mouse model for events related to ovarian cancer. Carcinogen 2000;21 (4):585. [1]]. The effect of ALA on cellular function was measured in cell proliferation and apoptosis assays. p27(kip1) protein levels were measured by Western analysis. Activation of NF-kappaB dependent transcription was assessed in cell cultures transiently transfected with NF-kappaB controlled reporter constructs. RESULTS: Our results reveal that ALA selectively inhibits the growth of tumorigenic as compared to non-tumorigenic ovarian surface epithelial cells. The growth inhibitory effect of ALA is not due to induction of apoptosis but instead is associated with an increase in the half-life of the cyclin-dependent kinase inhibitor, p27(kip1). In parallel to the growth inhibitory effect, ALA also affects a key inflammatory signaling pathway by inhibiting TNFalpha-induced NF-kappaB signaling activity. CONCLUSIONS: Our studies are the first to show that ALA treatment has a growth inhibitory effect on malignant surface epithelial cells of ovarian origin. We have also confirmed the reproducibility of the immunocompetent mouse ovarian cancer model originally described by Roby and coworkers [Roby KF, Taylor CC, Sweetwood JP, Cheng Y, Pace JL, Tawpik O, Persons DL, Smith PG, Terranova PF, Development of a syngeneic mouse model for events related to ovarian cancer.

Gynecol Oncol. 2006 Oct;103(1):45-52

Continued on Page 3 of 3