Life Extension Skin Care Sale


Life Extension Magazine February 2012


Therapeutic efficacy of undenatured type-II collagen (UC-II) in comparison to glucosamine and chondroitin in arthritic horses.

The present investigation evaluated arthritic pain in horses receiving daily placebo, undenatured type II collagen (UC-II) at 320, 480, or 640 mg (providing 80, 120, and 160 mg active UC-II, respectively), and glucosamine and chondroitin (5.4 and 1.8 g, respectively, bid for the first month, and thereafter once daily) for 150 days. Horses were evaluated for overall pain, pain upon limb manipulation, physical examination, and liver and kidney functions. Evaluation of overall pain was based upon a consistent observation of all subjects during a walk and a trot in the same pattern on the same surface. Pain upon limb manipulation was conducted after the walk and trot. It consisted of placing the affected joint in severe flexion for a period of 60 sec. The limb was then placed to the ground and the animal trotted off. The response to the flexion test was then noted with the first couple of strides the animal took. Flexion test was consistent with determining clinically the degree of osteoarthritis in a joint. Horses receiving placebo showed no change in arthritic condition, while those receiving 320 or 480 or 640 mg UC-II exhibited significant reduction in arthritic pain (P < 0.05). UC-II at 480 or 640 mg dose provided equal effects, and therefore, 480 mg dose was considered optimal. With this dose, reduction in overall pain was from 5.7 +/- 0.42 (100%) to 0.7 +/- 0.42 (12%); and in pain upon limb manipulation from 2.35 +/- 0.37 (100%) to 0.52 +/- 0.18 (22%). Although glucosamine and chondroitin treated group showed significant (P < 0.05) reduction in pain compared with pretreated values, the efficacy was less compared with that observed with UC-II. In fact, UC-II at 480 or 640 mg dose was found to be more effective than glucosamine and chondroitin in arthritic horses. Clinical condition (body weight, body temperature, respiration rate, and pulse rate), and liver (bilirubin, GGT, and ALP) and kidney (BUN and creatinine) functions remained unchanged, suggesting that these supplements were well tolerated.

J Vet Pharmacol Ther. 2009 Dec;32(6):577-84

Treatment of rheumatoid arthritis with oral type II collagen. Results of a multicenter, double-blind, placebo-controlled trial.

OBJECTIVE: Oral administration of cartilage-derived type II collagen (CII) has been shown to ameliorate arthritis in animal models of joint inflammation, and preliminary studies have suggested that this novel therapy is clinically beneficial and safe in patients with rheumatoid arthritis (RA). The present study was undertaken to test the safety and efficacy of 4 different dosages of orally administered CII in patients with RA. METHODS: Two hundred seventy-four patients with active RA were enrolled at 6 different sites and randomized to receive placebo or 1 of 4 dosages (20, 100, 500, or 2,500 microg/day) of oral CII for 24 weeks. Efficacy parameters were assessed monthly. Cumulative response rates (percentage of patients meeting the criteria for response at any time during the study) were analyzed utilizing 3 sets of composite criteria: the Paulus criteria, the American College of Rheumatology criteria for improvement in RA, and a requirement for > or = 30% reduction in both swollen and tender joint counts. RESULTS: Eighty-three percent of patients completed 24 weeks of treatment. Numeric trends in favor of the 20 microg/day treatment group were seen with all 3 cumulative composite measures. However, a statistically significant increase (P = 0.035) in response rate for the 20 microg/day group versus placebo was detected using only the Paulus criteria. The presence of serum antibodies to CII at baseline was significantly associated with an increased likelihood of responding to treatment. No treatment-related adverse events were detected. The efficacy seen with the lowest dosage is consistent with the findings of animal studies and with known mechanisms of oral tolerance in which lower doses of orally administered autoantigens preferentially induce disease-suppressing regulatory cells. CONCLUSION: Positive effects were observed with CII at the lowest dosage tested, and the presence of serum antibodies to CII at baseline may predict response to therapy. No side effects were associated with this novel therapeutic agent. Further controlled studies are required to assess the efficacy of this treatment approach.

Arthritis Rheum. 1998 Feb;41(2):290-7

Comparative therapeutic efficacy and safety of type-II collagen (uc-II), glucosamine and chondroitin in arthritic dogs: pain evaluation by ground force plate.

The investigation was conducted on client-owned moderately arthritic dogs with two objectives: (i) to evaluate therapeutic efficacy of type-II collagen (UC-II) alone or in combination with glucosamine hydrochloride (GLU) and chondroitin sulphate (CHO), and (ii) to determine their tolerability and safety. Dogs in four groups (n = 7-10), were treated daily for a period of 150 days with placebo (Group-I), 10 mg active UC-II (Group-II), 2000 mg GLU + 1600 mg CHO (Group-III), and UC-II + GLU + CHO (Group-IV). On a monthly basis, dogs were evaluated for observational pain (overall pain, pain upon limb manipulation, and pain after physical exertion) using different numeric scales. Pain level was also measured objectively using piezoelectric sensor-based GFP for peak vertical force and impulse area. Dogs were also examined every month for physical, hepatic (ALP, ALT and bilirubin) and renal (BUN and creatinine) functions. Based on observations, significant (p < 0.05) reduction in pain was noted in Group-II, III, and IV dogs. Using GFP, significant increases in peak vertical force (N/kg body wt) and impulse area (N s/kg body wt), indicative of a decrease in arthritis associated pain, were observed in Group-II dogs only. None of the dogs in any group showed changes in physical, hepatic or renal functions. In conclusion, based on GFP data, moderately arthritic dogs treated with UC-II (10 mg) showed a marked reduction in arthritic pain with maximum improvement by day 150. UC-II, GLU and CHO operate through different mechanisms of action, and were well tolerated over a period of 150 days.

J Anim Physiol Anim Nutr (Berl). 2011 May 30

Efficacy and tolerability of Boswellia serrata extract in treatment of osteoarthritis of knee—a randomized double blind placebo controlled trial.

Osteoarthritis is a common, chronic, progressive, skeletal, degenerative disorder, which commonly affects the knee joint. Boswellia serrata tree is commonly found in India. The therapeutic value of its gum (guggulu) has been known. It posses good anti-inflammatory, anti-arthritic and analgesic activity. A randomized double blind placebo controlled crossover study was conducted to assess the efficacy, safety and tolerability of Boswellia serrata Extract (BSE) in 30 patients of osteoarthritis of knee, 15 each receiving active drug or placebo for eight weeks. After the first intervention, washout was given and then the groups were crossed over to receive the opposite intervention for eight weeks. All patients receiving drug treatment reported decrease in knee pain, increased knee flexion and increased walking distance. The frequency of swelling in the knee joint was decreased. Radiologically there was no change. The observed differences between drug treated and placebo being statistically significant, are clinically relevant. BSE was well tolerated by the subjects except for minor gastrointestinal ADRs. BSE is recommended in the patients of osteoarthritis of the knee with possible therapeutic use in other arthritis.

Phytomedicine. 2003 Jan;10(1):3-7

Inhibition by boswellic acids of human leukocyte elastase.

Frankincense extracts and boswellic acids, biologically active pentacyclic triterpenes of frankincense, block leukotriene biosynthesis and exert potent anti-inflammatory effects. Screening for additional effects of boswellic acids on further proinflammatory pathways, we observed that acetyl-11-keto-beta-boswellic acid, an established direct, nonredox and noncompetitive 5-lipoxygenase inhibitor, decreased the activity of human leukocyte elastase (HLE) in vitro with an IC50 value of about 15 microM. Among the pentacyclic triterpenes tested in concentrations up to 20 microM, we also observed substantial inhibtion by beta-boswellic acid, amyrin and ursolic acid, but not by 18beta-glycyrrhetinic acid. The data show that the dual inhibition of 5-lipoxygenase and HLE is unique to boswellic acids: other pentacyclic triterpenes with HLE inhibitory activities (e.g., ursolic acid and amyrin) do not inhibit 5-lipoxygenase, and leukotriene biosynthesis inhibitors from different chemical classes (e.g., NDGA, MK-886 and ZM-230,487) do not impair HLE activity. Because leukotriene formation and HLE release are increased simultaneously by neutrophil stimulation in a variety of inflammation- and hypersensitivity-based human diseases, the reported blockade of two proinflammatory enzymes by boswellic acids might be the rationale for the putative antiphlogistic activity of acetyl-11-keto-beta-boswellic acid and derivatives.

J Pharmacol Exp Ther. 1997 Apr;281(1):460-3

Mechanism of 5-lipoxygenase inhibition by acetyl-11-keto-beta-boswellic acid.

The formation of 5-lipoxygenase (EC products from endogenous substrate by intact rat neutrophilic granulocytes and from exogenous arachidonic acid by rat granulocyte 105,000 x g supernatants and affinity chromatography-purified human leukocyte 5-lipoxygenase was inhibited by acetyl-11-keto-beta-boswellic acid (IC50 values of 1.5 microM, 8 microM, and 16 microM, respectively). With other pentacyclic triterpenes lacking the 11-keto function and/or the carboxyl function on ring A (e.g., amyrin and ursolic acid), no 5-lipoxygenase inhibition was observed. The presence of the noninhibitory pentacyclic triterpenes both in intact cells and in the cell-free system caused a concentration-dependent reversal of the 5-lipoxygenase inhibition by acetyl-11-keto-beta-boswellic acid, whereas the inhibitory actions of 5-lipoxygenase inhibitors from different chemical classes (MK-886, L-739,010, ZM-230,487, and nordihydroguaiaretic acid) were not modified. The inhibition by acetyl-11-keto-beta-boswellic acid and the antagonism by noninhibitory pentacyclic triterpenes were not due to nonspecific lipophilic interactions, because lipophilic four-ring compounds (cholesterol, cortisone, and testosterone) neither inhibited the activity of the 5-lipoxygenase nor antagonized the inhibitory action of acetyl-11-keto-beta-boswellic acid. Therefore, we conclude that acetyl-11-keto-beta-boswellic acid acts directly on the 5-lipoxygenase enzyme at a selective site for pentacyclic triterpenes that is different from the arachidonate substrate binding site.

Mol Pharmacol. 1995 Jun;47(6):1212-6

Comparative efficacy and tolerability of 5-Loxin and Aflapin against osteoarthritis of the knee: a double blind, randomized, placebo controlled clinical study.

Aflapin® is a novel synergistic composition derived from Boswellia serrata gum resin (Indian Patent Application No. 2229/CHE/2008). Aflapin is significantly better as an anti-inflammatory agent compared to the Boswellia extracts presently available in the market. A 90-day, double-blind, randomized, placebo-controlled study was conducted to evaluate the comparative efficacy and tolerability of 5-Loxin® and Aflapin® in the treatment of osteoarthritis (OA) of the knee (Clinical trial registration number: ISRCTN80793440). Sixty OA subjects were included in the study. The subjects received either 100 mg (n=20) of 5-Loxin® or 100 mg (n=20) of Aflapin® or a placebo (n=20) daily for 90 days. Each patient was evaluated for pain and physical functions by using the standard tools (visual analog scale, Lequesne›s Functional Index, and Western Ontario and McMaster Universities Osteoarthritis Index) at the baseline (day 0), and at days 7, 30, 60 and 90. A battery of biochemical parameters in serum, urine and hematological parameters in citrated whole blood were performed to assess the safety of 5-Loxin® and Aflapin® in OA subjects. Fifty seven subjects completed the study. At the end of the study, both 5-Loxin® and Aflapin conferred clinically and statistically significant improvements in pain scores and physical function scores in OA subjects. Interestingly, significant improvements in pain score and functional ability were recorded as early as 7 days after initiation of the study in the treatment group supplemented with 100 mg Aflapin. Corroborating the improvements in pain scores in treatment groups, our in vitro studies provide evidences that Aflapin® is capable of inhibiting cartilage degrading enzyme MMP-3 and has the potential to regulate the inflammatory response by inhibiting ICAM-1. Aflapin® and 5-Loxin® reduce pain and improve physical functions significantly in OA subjects. Aflapin exhibited better efficacy compared to 5-Loxin®. In comparison with placebo, the safety parameters were almost unchanged in the treatment groups. Hence both 5-Loxin® and Aflapin® are safe for human consumption.

Int J Med Sci. 2010 Nov 1;7(6):366-77

Effects of glucosamine administration on patients with rheumatoid arthritis.

The purpose of this study was to examine whether glucosamine has an antirheumatic effect in a randomized placebo-controlled study. The subjects were 51 rheumatoid arthritis (RA) patients: 25 patients in the glucosamine group and 26 patients in the placebo group. Glucosamine hydrochloride at a daily dose of 1,500 mg and placebo, respectively, were administered for 12 weeks along with conventional medication. While significant improvement was not found in joint counts and in the rate of ACR20 responders, the face scale and a visual analogue scale pain were significantly in favor of the glucosamine group. ESR and CRP levels did not change, but serum MMP-3 levels decreased in the glucosamine group. Results of the patients’ self-evaluations and the physicians’ global evaluations indicated that the glucosamine treatment produced noticeable improvements in symptoms. Although glucosamine administration had no antirheumatic effect evaluated by conventional measures, it seemed to have some symptomatic effects on RA.

Rheumatol Int. 2007 Jan;27(3):213-8

The epigenetic effect of glucosamine and a nuclear factor-kappa B (NF-kB) inhibitor on primary human chondrocytes—implications for osteoarthritis.

OBJECTIVE: Idiopathic osteoarthritis is the most common form of osteoarthritis (OA) world-wide and remains the leading cause of disability and the associated socio-economic burden in an increasing aging population. Traditionally, OA has been viewed as a degenerative joint disease characterized by progressive destruction of the articular cartilage and changes in the subchondral bone culminating in joint failure. However, the etiology of OA is multifactorial involving genetic, mechanical and environmental factors. Treatment modalities include analgesia, joint injection with steroids or hyaluronic acid, oral supplements including glucosamine and chondroitin sulfate, as well as physiotherapy. Thus, there is significant interest in the discovery of disease modifying agents. One such agent, glucosamine (GlcN) is commonly prescribed even though the therapeutic efficacy and mechanism of action remain controversial. Inflammatory cytokines, including IL-1b, and proteinases such as MMP-13 have been implicated in the pathogenesis and progression of OA together with an associated CpG demethylation in their promoters. We have investigated the potential of GlcN to modulate NF-kB activity and cytokine-induced abnormal gene expression in articular chondrocytes and, critically, whether this is associated with an epigenetic process. METHOD: Human chondrocytes were isolated from the articular cartilage of femoral heads, obtained with ethical permission, following fractured neck of femur surgery. Chondrocytes were cultured for 5 weeks in six separate groups; (i) control culture, (ii) cultured with a mixture of 2.5 ng/ml IL-1b and 2.5 ng/ml oncostatin M (OSM), (iii) cultured with 2mM N-acetyl GlcN (Sigma-Aldrich), (iv) cultured with a mixture of 2.5 ng/ml IL-1b, 2.5 ng/ml OSM and 2mM GlcN, (v) cultured with 1.0 μM BAY 11-7082 (BAY; NF-kB inhibitor: Calbiochem, Darmstadt, Germany) and, (vi) cultured with a mixture of 2.5 ng/ml IL-1b, 2.5 ng/ml OSM and 1.0 μM BAY. The levels of IL1B and MMP13 mRNA were examined using qRT-PCR. The percentage DNA methylation in the CpG sites of the IL-1b and MMP13 proximal promoter were quantified by pyrosequencing. RESULT: IL1b expression was enhanced over 580-fold in articular chondrocytes treated with IL-1b and OSM. GlcN dramatically ameliorated the cytokine-induced expression by 4-fold. BAY alone increased IL1b expression by 3-fold. In the presence of BAY, IL-1binduced IL1B mRNA levels were decreased by 6-fold. The observed average percentage methylation of the -256 CpG site in the IL1b promoter was 65% in control cultures and decreased to 36% in the presence of IL-1b/OSM. GlcN and BAY alone had a negligible effect on the methylation status of the IL1B promoter. The cytokine-induced loss of methylation status in the IL1B promoter was ameliorated by both GlcN and BAY to 44% and 53%, respectively. IL-1b/OSM treatment increased MMP13 mRNA levels independently of either GlcN or BAY and no change in the methylation status of the MMP13 promoter was observed. CONCLUSION: We demonstrate for the first time that GlcN and BAY can prevent cytokine-induced demethylation of a specific CpG site in the IL1b promoter and this was associated with decreased expression of IL1b. These studies provide a potential mechanism of action for OA disease modifying agents via NF-kB and, critically, demonstrate the need for further studies to elucidate the role that NF-kB may play in DNA demethylation in human chondrocytes.

Biochem Biophys Res Commun. 2011 Feb 18;405(3):362-7

Glucosamine inhibits IL-1beta-induced NFkappaB activation in human osteoarthritic chondrocytes.

OBJECTIVE: Glucosamine sulfate (GS) is a commonly used drug for the treatment of osteoarthritis. The mechanism of the action of this drug does, however, remain to be elucidated. In human osteoarthritic chondrocytes (HOC) stimulated with a proinflammatory cytokine, we studied whether GS could modify the NFkappaB activity and the expression of COX-2, a NFkappaB-dependent gene. METHODS: Using HOC in culture stimulated with interleukin-1 beta (IL-1beta), the effects of GS on NFkappaB activation, nuclear translocation of NFkappaB/Rel family members, COX-1 and COX-2 expressions and syntheses and prostaglandin E2 (PGE2) concentration were studied. RESULTS: GS significantly inhibited NFkappaB activity in a dose-dependent manner, as well as the nuclear translocation of p50 and p65 proteins. Furthermore, GS-preincubated IL-1beta-stimulated HOC showed an increase in IkappaBalpha in the cell cytoplasm in comparison with HOC incubated with IL-1beta alone. GS also inhibited the gene expression and the protein synthesis of COX-2 induced by IL-1beta, while no effect on COX-1 synthesis was seen. GS also inhibited the release of PGE2 to conditioned media of HOC stimulated with IL-1beta. CONCLUSIONS: GS inhibits the synthesis of proinflammatory mediators in HOC stimulated with IL-1beta through a NFkappaB-dependent mechanism. Our study further supports the role of GS as a symptom- and structure-modifying drug in the treatment of OA.

Osteoarthritis Cartilage. 2003 Apr;11(4):290-8