Whole Body Health Sale

Abstracts

Life Extension Magazine January 2013
Abstracts 

Ceramides, Cruciferous Vegetables, CoQ10, and Black Cumin

Black Cumin

Protective effect of black seed oil from Nigella sativa against murine cytomegalovirus infection.

In this study, antiviral effect of black seed oil (BSO) from Nigella sativa was investigated using murine cytomegalovirus (MCMV) as a model. The viral load and innate immunity mediated by NK cells and Mφ during early stage of the infection were analyzed. Intraperitoneal (i.p.) administration of BSO to BALB/c mice, a susceptible strain of MCMV infection, strikingly inhibited the virus titers in spleen and liver on day 3 of infection with 1x10(5) PFU MCMV. This effect coincided with an increase in serum level of IFN-gamma. Although BSO treatment decreased both number and cytolytic function of NK cells on day 3 of infection, it increased numbers of Mφ and CD4(+) T cells. On day 10 of infection, the virus titer was undetectable in spleen and liver of BSO-treated mice, while it was detectable in control mice. Although spleen of both control and BSO-treated mice showed similar CTL activities on day 10 after infection, serum level of IFN-gamma in BSO-treated mice was higher. Furthermore, BSO treatment upregulated suppressor function of Mφ in spleen. These results show that BSO exhibited a striking antiviral effect against MCMV infection which may be mediated by increasing of Mφ number and function, and IFN-gamma production.

Int J Immunopharmacol. 2000 Sep;22(9):729-40

Thymoquinone, the active ingredient of Nigella sativa seeds, enhances survival and activity of antigen-specific CD8-positive T cells in vitro.

Recent preclinical and clinical studies provide evidence that adoptive transfer of in vitro activated T cells can results in significant antitumour responses in vivo upon acquisition of certain survival and homing properties during in vitro activation. Based on recent studies showing in vivo antioxidant effects of thymoquinone (TQ), the active ingredient of Nigella sativa seeds, this study aims to determine whether or not TQ can increase survival and sustain the expression of the homing receptor CD62L in antigen-specific T cells in vitro. The results showed that stimulation of OT-1 (transgenic CD+) T cells with OVA antigen resulted in activation, as shown by a decrease in the surface expression of CD62L which coincided with significant apoptosis measured three and five days after antigen stimulation. Addition of low concentrations of TQ during CD85+ T-cell activation resulted in enhanced survival of the activated T cells and sustained expression of CD62L. These effects coincided with enhancement in the capability of CD8+ T cells to produce the effector cytokine interferon-gamma (IFNgamma). These results suggest that TQ has a beneficial effect in conditioning T cells in vitro for adoptive T-cell therapy against cancer and infectious disease.

Br J Biomed Sci. 2011;68(3):131-7

Immunomodulatory and therapeutic properties of the Nigella sativa L. seed.

A larger number of medicinal plants and their purified constituents have been shown beneficial therapeutic potentials. Seeds of Nigella sativa, a dicotyledon of the Ranunculaceae family, have been employed for thousands of years as a spice and food preservative. The oil and seed constituents, in particular thymoquinine (TQ), have shown potential medicinal properties in traditional medicine. In view of the recent literature, this article lists and discusses different immunomodulatory and immunotherapeutic potentials for the crude oil of N. sativa seeds and its active ingredients. The published findings provide clear evidence that both the oil and its active ingredients, in particular TQ, possess reproducible anti-oxidant effects through enhancing the oxidant scavenger system, which as a consequence lead to antitoxic effects induced by several insults. The oil and TQ have shown also potent anti-inflammatory effects on several inflammation-based models including experimental encephalomyelitis, colitis, peritonitis, oedama, and arthritis through suppression of the inflammatory mediators prostaglandins and leukotriens. The oil and certain active ingredients showed beneficial immunomodulatory properties, augmenting the T cell- and natural killer cell-mediated immune responses. Most importantly, both the oil and its active ingredients expressed anti-microbial and anti-tumor properties toward different microbes and cancers. Coupling these beneficial effects with its use in folk medicine, N. sativa seed is a promising source for active ingredients that would be with potential therapeutic modalities in different clinical settings. The efficacy of the active ingredients, however, should be measured by the nature of the disease. Given their potent immunomodulatory effects, further studies are urgently required to explore bystander effects of TQ on the professional antigen presenting cells, including macrophages and dendritic cells, as well as its modulatory effects upon Th1- and Th2-mediated inflammatory immune diseases. Ultimately, results emerging from such studies will substantially improve the immunotherapeutic application of TQ in clinical settings.

Int Immunopharmacol. 2005 Dec;5(13-14):1749-70

Modulation of the oxidative stress and inflammatory cytokine response by thymoquinone in the collagen induced arthritis in Wistar rats.

Thymoquinone (TQ) is the major active compound derived from Nigella sativa. Our aim of this work was to evaluate the antioxidant and antiarthritic activity of TQ in Wistar rat by collagen induced arthritis (CIA). TQ was administered at a dose of 5mgkg(-1) body weight once daily for 21days. The effects of treatment in the rats were assessed by biochemical (articular elastase, MPO, LPO, GSH, catalase, SOD and NO), inflammatory mediators (IL-1β, IL-6, TNF-α, IL-10, IFN-γ and PGE(2)) and histological studies in joints. TQ was effective in bringing significant changes on all the parameters (articular elastase, MPO, LPO, GSH, catalase, SOD and NO) studied. Oral administration of TQ resulted in significantly reduced the levels of pro-inflammatory mediators (IL-1β, IL-6, TNF-α, IFN-γ and PGE(2)) and increased level of IL-10. The protective effects of TQ against RA were also evident from the decrease in arthritis scoring and bone histology. In conclusion, the fact that TQ abolished a number of factors known to be involved in RA pathogenesis indicates that the administration of thymoquinone may have potential value in the treatment of inflammatory disease.

Chem Biol Interact. 2012 Apr 15;197(1):40-6

Protective effects of black cumin (Nigella sativa) oil on TNBS-induced experimental colitis in rats.

BACKGROUND: The pathogenesis and treatment of ulcerative colitis remain poorly understood. The aim of the present study is to investigate the effects of black cumin (Nigella sativa) oil on rats with colitis. METHODS: Experimental colitis was induced with 1 mL trinitrobenzene sulfonic acid (TNBS) in 40% ethanol by intracolonic administration with 8-cm-long cannula under ether anesthesia to rats in colitis group and colitis + black cumin oil group. Rats in the control group were given saline at the same volume by intracolonic administration. Black cumin oil (BCO, Origo "100% natural Black Cumin Seed Oil," Turkey) was given to colitis + black cumin oil group by oral administration during 3 days, 5 min after colitis induction. Saline was given to control and colitis groups at the same volume by oral administration. At the end of the experiment, macroscopic lesions were scored and the degree of oxidant damage was evaluated by colonic total protein, sialic acid, malondialdehyde, and glutathione levels, collagen content, and tissue factor, superoxide dismutase, and myeloperoxidase activities. Tissues were also examined by histological and cytological analysis. Proinflammatory cytokines [tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, and IL-6], lactate dehydrogenase activity, and triglyceride and cholesterol levels were analyzed in blood samples. RESULTS: We found that black cumin oil decreased the proinflammatory cytokines, lactate dehydrogenase, triglyceride, and cholesterol, which were increased in colitis. CONCLUSIONS: BCO, by preventing inflammatory status in the blood, partly protected colonic tissue against experimental ulcerative colitis.

Dig Dis Sci. 2011 Mar;56(3):721-30

Gastroprotective activity of Nigella sativa L oil and its constituent, thymoquinone against acute alcohol-induced gastric mucosal injury in rats.

AIM: To evaluate the role of reactive oxygen species in the pathogenesis of acute ethanol-induced gastric mucosal lesions and the effect of Nigella sativa L oil (NS) and its constituent thymoquinone (TQ) in an experimental model. METHODS: Male Wistar albino rats were assigned into 4 groups. Control group was given physiologic saline orally (10 mL/kg body weight) as the vehicle (gavage); ethanol group was administrated 1 mL (per rat) absolute alcohol by gavage; the third and fourth groups were given NS (10 mL/kg body weight) and TQ (10 mg/kg body weight p.o) respectively 1 h prior to alcohol intake. One hour after ethanol administration, stomach tissues were excised for macroscopic examination and biochemical analysis. RESULTS: NS and TQ could protect gastric mucosa against the injurious effect of absolute alcohol and promote ulcer healing as evidenced from the ulcer index (UI) values. NS prevented alcohol-induced increase in thiobarbituric acid-reactive substances (TBARS), an index of lipid peroxidation. NS also increased gastric glutathione content (GSH), enzymatic activities of gastric superoxide dismutase (SOD) and glutathione-S-transferase (GST). Likewise, TQ protected against the ulcerating effect of alcohol and mitigated most of the biochemical adverse effects induced by alcohol in gastric mucosa, but to a lesser extent than NS. Neither NS nor TQ affected catalase activity in gastric tissue. CONCLUSION: Both NS and TQ, particularly NS can partly protect gastric mucosa from acute alcohol-induced mucosal injury, and these gastroprotective effects might be induced, at least partly by their radical scavenging activity.

World J Gastroenterol. 2005 Nov 14;11(42):6662-6

Thymoquinone: potential cure for inflammatory disorders and cancer.

Thymoquinone is an active ingredient isolated from Nigella sativa and has been investigated for its anti-oxidant, anti-inflammatory and anticancer activities in both in vitro and in vivo models since its first extraction in 1960s. Its anti-oxidant/anti-inflammatory effect has been reported in various disease models, including encephalomyelitis, diabetes, asthma and carcinogenesis. Moreover, thymoquinone could act as a free radical and superoxide radical scavenger, as well as preserving the activity of various anti-oxidant enzymes such as catalase, glutathione peroxidase and glutathione-S-transferase. The anticancer effect(s) of thymoquinone are mediated through different modes of action, including anti-proliferation, apoptosis induction, cell cycle arrest, ROS generation and anti-metastasis/anti-angiogenesis. In addition, this quinone was found to exhibit anticancer activity through the modulation of multiple molecular targets, including p53, p73, PTEN, STAT3, PPAR-γ, activation of caspases and generation of ROS. The anti-tumor effects of thymoquinone have also been investigated in tumor xenograft mice models for colon, prostate, pancreatic and lung cancer. The combination of thymoquinone and conventional chemotherapeutic drugs could produce greater therapeutic effect as well as reduce the toxicity of the latter. In this review, we summarize the anti-oxidant/anti-inflammatory and anticancer effects of thymoquinone with a focus on its molecular targets, and its possible role in the treatment of inflammatory diseases and cancer.

Biochem Pharmacol. 2012 Feb 15;83(4):443-51

Contrasting actions of diesel exhaust particles on the pulmonary and cardiovascular systems and the effects of thymoquinone.

BACKGROUND AND PURPOSE: Acute exposure to particulate air pollution has been linked to acute cardiopulmonary events, but the underlying mechanisms are uncertain. EXPERIMENTAL APPROACH We investigated the acute (at 4 and 18 h) effects of diesel exhaust particles (DEP) on cardiopulmonary parameters in mice and the protective effect of thymoquinone, a constituent of Nigella sativa. Mice were given, intratracheally, either saline (control) or DEP (30 µg•per mouse). KEY RESULTS At 18 h (but not 4 h) after giving DEP, there was lung inflammation and loss of lung function. At both 4 and 18 h, DEP caused systemic inflammation characterized by leucocytosis, increased IL-6 concentrations and reduced systolic blood pressure (SBP). Superoxide dismutase (SOD) activity was decreased only at 18 h. DEP reduced platelet numbers and aggravated in vivo thrombosis in pial arterioles. In vitro, addition of DEP (0.1-1 µg•mL(-1)) to untreated blood-induced platelet aggregation. Pretreatment of mice with thymoquinone prevented DEP-induced decrease of SBP and leucocytosis, increased IL-6 concentration and decreased plasma SOD activity. Thymoquinone also prevented the decrease in platelet numbers and the prothrombotic events but not platelet aggregation in vitro. CONCLUSIONS AND IMPLICATIONS: At 4 h after DEP exposure, the cardiovascular changes did not appear to result from pulmonary inflammation but possibly from the entry of DEP and/or their associated components into blood. However, at 18 h, DEP induced significant changes in pulmonary and cardiovascular functions along with lung inflammation. Pretreatment with thymoquinone prevented DEP-induced cardiovascular changes.

Br J Pharmacol. 2011 Dec;164(7):1871-82

Protective effects of propolis and thymoquinone on development of atherosclerosis in cholesterol-fed rabbits.

Hypercholesterolemia, cholesterol-enriched diet and oxidative stress have been shown to increase serum total cholesterol (TC) and low density lipoprotein-cholesterol (LDL-C) levels resulting in development of atherosclerosis. Antioxidants play an important role in inhibiting and scavenging free radicals, thus providing protection to humans against infectious and degenerative diseases. The present study was undertaken to examine the possible protective effects of propolis (a resinous hive product collected by honeybees from various plant sources) and thymoquinone (TQ, active constituent of Nigella. Sativa seeds oil) on serum lipid levels and early atherosclerotic lesions in hypercholestrolemic rabbits. New Zealand rabbits were fed on either standard chow or atherogenic diet during four weeks and concomitantly received either propolis or TQ. At the end of experiment period, serum samples were collected to determine lipid profile, kidney functions and antioxidant status. Tissues from aorta, pulmonary artery and kidney were taken for histopathological examination. The cholesterol-enriched diet induced a significant increase in serum TC, triglycerides, LDL-C, thiobarbituric acid-reactive substances concentrations and a significant decrease in high density lipoprotein-cholesterol and in reduced glutathione levels compared to control group. Administration of propolis or TQ with cholesterol-enriched diet significantly (p < 0.05) reduced TC, LDL-C, triglycerides and thiobarbituric acid-reactive substances concentrations, while increased high density lipoprotein-cholesterol concentration, as well as glutathione content compared to high cholesterol (HC) control group. Kidney function parameters were significantly affected by cholesterol diet and both propolis and TQ counterregulated the cholesterol-induced changes. Histopathologically, early atherosclerotic changes were observed in HC control group represented by endothelial damage and thickened foam cells while propolis or TQ provided protection against the HC-induced damage. In conclusion, the present study suggests the potential beneficial effects of both propolis and TQ in diminishing the risk of atherosclerosis via antioxidant mechanism.

Arch Pharm Res. 2010 Apr;33(4):637-43

Nigella sativa oil, nigellone and derived thymoquinone inhibit synthesis of 5-lipoxygenase products in polymorphonuclear leukocytes from rats.

In the present study, Nigella sativa oil (NSO), nigellone (polythymoquinone) and derived thymoquinone were studied to evaluate their effect on the formation of 5-lipoxygenase (5-LO) products from polymorphonuclear leukocytes (PMNL).NSO produced a concentration dependent inhibition of 5-LO products and 5-hydroxy-eicosa-tetra-enoic acid (5-HETE) production with half maximal effects (IC(50)) at 25+/-1 micro g/ml, respectively 24+/-1 micro g/ml. Nigellone caused a concentration-related inhibition of 5-HETE production (IC(50): 11.9+/-0.3 micro g/ml). Moreover thymoquinone, the active principle of NSO inhibited the production of 5-LO products (IC(50): 0.26+/-0.02 micro g/ml) and 5-HETE production (IC(50): 0.36+/-0.02 micro g/ml) in a similar way. The effects are probably due to an antioxidative action. The data may in part explain the effect of the oil, its derived thymoquinone and nigellone in ameliorating inflammatory diseases.

J Ethnopharmacol. 2002 Jul;81(2):161-4