Life Extension Skin Care Sale

Abstracts

Life Extension Magazine August 2012
Abstracts

Curcumin

Curcumin Phase I dose escalation trial of docetaxel plus curcumin in patients with advanced and metastatic breast cancer.

BACKGROUND: Since the improvement of chemotherapy with safe molecules is needed for a better efficacy without supplementary toxicity, we investigated the feasibility and tolerability of the combination of docetaxel and curcumin, a polyphenolic derivative extracted from Curcuma longa root. RESULTS: Fourteen patients were accrued in this open-label phase I trial. At the last dose level of curcumin, three dose-limiting toxicities were observed and two out of three patients at this dose level refused to continue treatment, leading us to define the maximal tolerated dose of curcumin at 8,000 mg/d. Eight patients out of 14 had measurable lesions according to RECIST criteria, with five PR and three SD. Some improvements as biological and clinical responses were observed in most patients. PATIENTS AND METHODS: Patients with advanced or metastatic breast cancer were eligible. Docetaxel (100 mg/m(2)) was administered as a 1 h i.v. infusion every 3 w on d 1 for six cycles. Curcumin was orally given from 500 mg/d for seven consecutive d by cycle (from d-4 to d+2) and escalated until a dose-limiting toxicity should occur. The primary endpoint of this study was to determine the maximal tolerated dose of the combination of dose-escalating curcumin and standard dose of docetaxel chemotherapy in advanced and metastatic breast cancer patients. Secondary objectives included toxicity, safety, vascular endothelial growth factor and tumor markers measurements and assessment of objective and clinical responses to the combination therapy. CONCLUSION: The recommended dose of curcumin is 6,000 mg/d for seven consecutive d every 3 w in combination with a standard dose of docetaxel. From the encouraging efficacy results, a comparative phase II trial of this regimen plus docetaxel versus docetaxel alone is ongoing in advanced and metastatic breast cancer patients.

Cancer Biol Ther. 2010 Jan;9(1):8-14

Combined inhibitory effects of soy isoflavones and curcumin on the production of prostate-specific antigen.

BACKGROUND: Sustained chronic inflammation in the prostate promotes prostate carcinogenesis. Since an elevated level of prostate-specific antigen (PSA) per se reflects the presence of inflammation in the prostate, intervention to improve the PSA value might potentially have beneficial effects for the prevention of the development of prostate cancer. Isoflavones and curcumin have anti-inflammatory and anti-oxidant properties. We examined the biological effects of soy isoflavones and curcumin on LNCaP cells. After that, we conducted a clinical trial for men who received prostate biopsies, but were not found to have prostate cancer, to evaluate the effects of soy isoflavones and curcumin on serum PSA levels. METHODS: The expression of androgen receptor and PSA were examined in LNCaP cells before and after treatment of isoflavones and/or curcumin. Eighty-five participants were randomized to take a supplement containing isoflavones and curcumin or placebo daily in a double-blind study. Subjects were subdivided by the cut-off of their baseline PSA value at 10 microg/ml. We evaluated values of PSA before and 6 months after treatment. RESULTS: The production of PSA were markedly decreased by the combined treatment of isoflavones and curcumin in prostate cancer cell line, LNCaP. The expression of the androgen receptor was also suppressed by the treatment. In clinical trials, PSA levels decreased in the patients group with PSA >or= 10 treated with supplement containing isoflavones and curcumin (P = 0.01). CONCLUSIONS: Our results indicated that isoflavones and curcumin could modulate serum PSA levels. Curcumin presumably synergizes with isoflavones to suppress PSA production in prostate cells through the anti-androgen effects.

Prostate. 2010 Jul 1;70(10):1127-33

A randomized, pilot study to assess the efficacy and safety of curcumin in patients with active rheumatoid arthritis.

Curcumin is known to possess potent antiinflammatory and antiarthritic properties. This pilot clinical study evaluated the safety and effectiveness of curcumin alone, and in combination with diclofenac sodium in patients with active rheumatoid arthritis (RA). Forty-five patients diagnosed with RA were randomized into three groups with patients receiving curcumin (500 mg) and diclofenac sodium (50 mg) alone or their combination. The primary endpoints were reduction in Disease Activity Score (DAS) 28. The secondary endpoints included American College of Rheumatology (ACR) criteria for reduction in tenderness and swelling of joint scores. Patients in all three treatment groups showed statistically significant changes in their DAS scores. Interestingly, the curcumin group showed the highest percentage of improvement in overall DAS and ACR scores (ACR 20, 50 and 70) and these scores were significantly better than the patients in the diclofenac sodium group. More importantly, curcumin treatment was found to be safe and did not relate with any adverse events. Our study provides the first evidence for the safety and superiority of curcumin treatment in patients with active RA, and highlights the need for future large-scale trials to validate these findings in patients with RA and other arthritic conditions.

Phytother Res. 2012 Mar 9

Curcumin: the Indian solid gold.

Turmeric, derived from the plant Curcuma longa, is a gold-colored spice commonly used in the Indian subcontinent, not only for health care but also for the preservation of food and as a yellow dye for textiles. Curcumin, which gives the yellow color to turmeric, was first isolated almost two centuries ago, and its structure as diferuloylmethane was determined in 1910. Since the time of Ayurveda (1900 Bc) numerous therapeutic activities have been assigned to turmeric for a wide variety of diseases and conditions, including those of the skin, pulmonary, and gastrointestinal systems, aches, pains, wounds, sprains, and liver disorders. Extensive research within the last half century has proven that most of these activities, once associated with turmeric, are due to curcumin. Curcumin has been shown to exhibit antioxidant, anti-inflammatory, antiviral, antibacterial, antifungal, and anticancer activities and thus has a potential against various malignant diseases, diabetes, allergies, arthritis, Alzheimer's disease, and other chronic illnesses. These effects are mediated through the regulation of various transcription factors, growth factors, inflammatory cytokines, protein kinases, and other enzymes. Curcumin exhibits activities similar to recently discovered tumor necrosis factor blockers (e.g., HUMIRA, REMICADE, and ENBREL), a vascular endothelial cell growth factor blocker (e.g., AVASTIN), human epidermal growth factor receptor blockers (e.g., ERBITUX, ERLOTINIB, and GEFTINIB), and a HER2 blocker (e.g., HERCEPTIN). Considering the recent scientific bandwagon that multitargeted therapy is better than monotargeted therapy for most diseases, curcumin can be considered an ideal “Spice for Life.”

Adv Exp Med Biol. 2007;595:1-75

Synergistic chondroprotective effects of curcumin and resveratrol in human articular chondrocytes: inhibition of IL-1beta-induced NF-kappaB-mediated inflammation and apoptosis.

INTRODUCTION: Currently available treatments for osteoarthritis (OA) are restricted to nonsteroidal anti-inflammatory drugs, which exhibit numerous side effects and are only temporarily effective. Thus novel, safe and more efficacious anti-inflammatory agents are needed for OA. Naturally occurring polyphenolic compounds, such as curcumin and resveratrol, are potent agents for modulating inflammation. Both compounds mediate their effects by targeting the NF-kappaB signalling pathway. METHODS: We have recently demonstrated that in chondrocytes resveratrol modulates the NF-kappaB pathway by inhibiting the proteasome, while curcumin modulates the activation of NF-kappaB by inhibiting upstream kinases (Akt). However, the combinational effects of these compounds in chondrocytes has not been studied and/or compared with their individual effects. The aim of this study was to investigate the potential synergistic effects of curcumin and resveratrol on IL-1beta-stimulated human chondrocytes in vitro using immunoblotting and electron microscopy. RESULTS: Treatment with curcumin and resveratrol suppressed NF-kappaB-regulated gene products involved in inflammation (cyclooxygenase-2, matrix metalloproteinase (MMP)-3, MMP-9, vascular endothelial growth factor), inhibited apoptosis (Bcl-2, Bcl-xL, and TNF-alpha receptor-associated factor 1) and prevented activation of caspase-3. IL-1beta-induced NF-kappaB activation was suppressed directly by cocktails of curcumin and resveratrol through inhibition of Ikappakappa and proteasome activation, inhibition of IkappaBalpha phosphorylation and degradation, and inhibition of nuclear translocation of NF-kappaB. The modulatory effects of curcumin and resveratrol on IL-1beta-induced expression of cartilage specific matrix and proinflammatory enzymes were mediated in part by the cartilage-specific transcription factor Sox-9. CONCLUSIONS: We propose that combining these natural compounds may be a useful strategy in OA therapy as compared with separate treatment with each individual compound.

Arthritis Res Ther. 2009;11(6):R165

Dietary curcumin significantly improves obesity-associated inflammation and diabetes in mouse models of diabesity.

Obesity is a major risk factor for the development of type 2 diabetes, and both conditions are now recognized to possess significant inflammatory components underlying their pathophysiologies. We tested the hypothesis that the plant polyphenolic compound curcumin, which is known to exert potent antiinflammatory and antioxidant effects, would ameliorate diabetes and inflammation in murine models of insulin-resistant obesity. We found that dietary curcumin admixture ameliorated diabetes in high-fat diet-induced obese and leptin-deficient ob/ob male C57BL/6J mice as determined by glucose and insulin tolerance testing and hemoglobin A1c percentages. Curcumin treatment also significantly reduced macrophage infiltration of white adipose tissue, increased adipose tissue adiponectin production, and decreased hepatic nuclear factor-kappaB activity, hepatomegaly, and markers of hepatic inflammation. We therefore conclude that orally ingested curcumin reverses many of the inflammatory and metabolic derangements associated with obesity and improves glycemic control in mouse models of type 2 diabetes. This or related compounds warrant further investigation as novel adjunctive therapies for type 2 diabetes in man.

Endocrinology. 2008 Jul;149(7):3549-58

Curcumin protects human chondrocytes from IL-l1beta-induced inhibition of collagen type II and beta1-integrin expression and activation of caspase-3: an immunomorphological study.

Interleukin 1beta (IL-1beta) is a pleiotropic pro-inflammatory cytokine that plays a key role in mediating cartilage degradation in osteoarticular disorders such as osteoarthritis (OA) and rheumatoid arthritis (RA). At the cellular level, IL-1beta activates matrix degrading enzymes, down-regulates expression of matrix components and induces chondrocyte apoptosis. Curcumin (diferuloylmethane) is an anti-inflammatory phytochemical agent that has recently been shown to antagonize the pro-inflammatory effects of cytokines in chondrocytes and other cells. To test the hypothesis that curcumin also protects chondrocytes from morphological alterations induced by IL-1beta, we investigated its in vitro effects on apoptotic signalling proteins and key cartilage-specific matrix components in IL-1beta-stimulated chondrocytes. Human articular chondrocytes were pre-treated with 10 ng/mI IL-1beta alone for 30 min before being co-treated with IL-1beta and 50 microM curcumin for 5, 15 or 30 min, respectively. The ultrastructural morphology of chondrocytes was investigated by transmission electron microscopy. The production of collagen type II, the adhesion and signal transduction receptor beta1-integrin, the apoptosis marker activated caspase-3 was analysed by immunohistochemistry, immunoelectron microscopy and Western blotting. Transmission electron microscopy of chondrocytes stimulated with IL-1beta revealed early degenerative changes which were relieved by curcumin co-treatment. The suppression of collagen type II and beta1-integrin synthesis by IL-1beta was inhibited by curcumin. Additionally, curcumin antagonized IL-1beta-induced caspase-3 activation in a time-dependent manner. This study clearly demonstrates that curcumin exerts anti-apoptotic and anti-catabolic effects on IL-1beta-stimulated articular chondrocytes. Therefore curcumin may have novel therapeutic potential as an adjunct nutraceutical chondroprotective agent for treating OA and related osteoarticular disorders.

Ann Anat. 2005 Nov;187(5-6):487-97

A Pilot Cross-Over Study to Evaluate Human Oral Bioavailability of BCM-95CG (Biocurcumax), A Novel Bioenhanced Preparation of Curcumin.

Curcumin, the bioactive component of turmeric, Curcuma longa has an exceptionally wide spectrum of activities including antioxidant, anti-inflammatory and anti-cancer properties, and is currently under different phases of clinical trials for various types of soft tissue cancers. However, although in vitro and animal studies have shown anticancer activities of curcumin for virtually all types of human cancers, its poor bioavailability in the human body has severely limited its application to these diseases. Methods to increase its oral bioavailability are a subject of intense current research. Reconstituting curcumin with the non-curcuminoid components of turmeric has been found to increase the bioavailability substantially. In the present clinical study to determine the bioavailability of curcuminoids, a patented formulation, BCM-95((R))CG was tested on human volunteer group. Normal curcumin was used in the control group. Curcumin content in blood was estimated at periodical intervals. After a washout period of two weeks the control group and drug group were crossed over BCM-95((R))CG and curcumin, respectively. It was also compared with a combination of curcumin-lecithin-piperine which was earlier shown to provide enhanced bioavailability. The results of the study indicate that the relative bioavailability of BCM-95((R))CG (Biocurcumax) was about 6.93-fold compared to normal curcumin and about 6.3-fold compared to curcumin-lecithin-piperine formula. BCM-95((R))CG thus, has potential for widespread application for various chronic diseases.

Indian J Pharm Sci. 2008 Jul-Aug;70(4):445-9

Biological actions of curcumin on articular chondrocytes.

OBJECTIVES: Curcumin (diferuloylmethane) is the principal biochemical component of the spice turmeric and has been shown to possess potent anti-catabolic, anti-inflammatory and antioxidant, properties. This article aims to provide a summary of the actions of curcumin on articular chondrocytes from the available literature with the use of a text-mining tool. We highlight both the potential benefits and drawbacks of using this chemopreventive agent for treating osteoarthritis (OA). We also explore the recent literature on the molecular mechanisms of curcumin mediated alterations in gene expression mediated via activator protein 1 (AP-1)/nuclear factor-kappa B (NF-kappaB) signalling in chondrocytes, osteoblasts and synovial fibroblasts. METHODS: A computer-aided search of the PubMed/Medline database aided by a text-mining tool to interrogate the ResNet Mammalian database 6.0. RESULTS: Recent work has shown that curcumin protects human chondrocytes from the catabolic actions of interleukin-1 beta (IL-1beta) including matrix metalloproteinase (MMP)-3 up-regulation, inhibition of collagen type II and down-regulation of beta1-integrin expression. Curcumin blocks IL-1beta-induced proteoglycan degradation, AP-1/NF-kappaB signalling, chondrocyte apoptosis and activation of caspase-3. CONCLUSIONS: The available data from published in vitro and in vivo studies suggest that curcumin may be a beneficial complementary treatment for OA in humans and companion animals. Nevertheless, before initiating extensive clinical trials, more basic research is required to improve its solubility, absorption and bioavailability and gain additional information about its safety and efficacy in different species. Once these obstacles have been overcome, curcumin and structurally related biochemicals may become safer and more suitable nutraceutical alternatives to the non-steroidal anti-inflammatory drugs that are currently used for the treatment of OA.

Osteoarthritis Cartilage. 2010 Feb;18(2):141-9

Phase II trial of curcumin in patients with advanced pancreatic cancer.

PURPOSE: Pancreatic cancer is almost always lethal, and the only U.S. Food and Drug Administration-approved therapies for it, gemcitabine and erlotinib, produce objective responses in 18 months; interestingly, one additional patient had a brief, but marked, tumor regression (73%) accompanied by significant increases (4- to 35-fold) in serum cytokine levels (IL-6, IL-8, IL-10, and IL-1 receptor antagonists). No toxicities were observed. Curcumin down-regulated expression of NF-kappaB, cyclooxygenase-2, and phosphorylated signal transducer and activator of transcription 3 in peripheral blood mononuclear cells from patients (most of whom had baseline levels considerably higher than those found in healthy volunteers). Whereas there was considerable interpatient variation in plasma curcumin levels, drug levels peaked at 22 to 41 ng/mL and remained relatively constant over the first 4 weeks. CONCLUSIONS: Oral curcumin is well tolerated and, despite its limited absorption, has biological activity in some patients with pancreatic cancer.

Clin Cancer Res. 2008 Jul 15;14(14):4491-9